14.13 Lecture 16

Xavier Gabaix

April 8, 2004

1 Is exponential discounting (and hence dynamic consistency) a good assumption?

The property of dynamic consistency is appealing.

- Early selves and late selves agree!
- self $_{t=0}$ decides C_{0} and plans for $C_{1}, C_{2} \ldots$
- self $_{t=1}$ decides C_{1} and plans for $C_{2}, C_{3} \ldots$
- Can simply maximize at beginning of problem without worrying about later selves overturning the decisions of early selves. But, sometimes there does appear to be a conflict between early selves and late selves:
- I'll quit smoking next week...
- I'll start the problem set early, so I won't need to work all night...
- I'll go to sleep now, but get up early so I can finish the problem set...
- I'll exercise this weekend...
- I'll eat better food...
- I'll call my grandparents next week...
- I'll start studying for my finals at the beginning of reading period....
- I'll stop procrastinating on my term paper...

Early selves say "be good" (get up at 7 to finish problem set)

Late selves want "instant gratification" (keep hitting snooze button)

When discount functions are not exponential, the intertemporal choice model generates a conflict between early selves and late selves: dynamic inconsistency.

Dynamically inconsistent model predicts "self-control problems" like procrastination, laziness, addiction, etc...

Motivation for dynamically inconsistent preferences: Measured discount functions don't appear to be exponential.

Instead, short-run discount rates are measured to be higher than long-run discount rates.

Early selves want later selves to be patient. Later selves don't want to be patient.
$\ln \Delta(t)$

2 Discounting evidence

Thaler (1981)

- What amount makes you indifferent between $\$ 15$ today and $\$ X$ in 1 month? $(X=20)$

If your preferences were exponential, the initial utility is

$$
V_{0}=\sum_{t} \delta^{t} u\left(c_{t}\right)
$$

where t is expressed in years. Call V^{\prime} the utility from accepting $\$ 15$ today and $V^{\prime \prime}$ the utility form accepting $\$ X$ in 1 month

$$
\begin{aligned}
V^{\prime}-V_{0} & =u\left(c_{0}+15\right)-u\left(c_{0}\right) \\
V^{\prime \prime}-V_{0} & =\delta^{t}\left(u\left(c_{t}+X\right)-u\left(c_{t}\right)\right)
\end{aligned}
$$

You are indifferent iff

$$
\begin{gathered}
V^{\prime}-V_{0}=V^{\prime \prime}-V_{0} \\
\Longleftrightarrow u\left(c_{0}+15\right)-u\left(c_{0}\right)=\delta^{t}\left(u\left(c_{t}+X\right)-u\left(c_{t}\right)\right) \\
\Longleftrightarrow 15 u^{\prime}\left(c_{0}\right)=\delta^{t} X u^{\prime}\left(c_{t}\right)
\end{gathered}
$$

by Taylor expansion as $15 \ll c_{0}$ and $X \ll c_{t}$.
Assume now that $c_{0} \simeq c_{t}$

$$
\begin{aligned}
& \Longleftrightarrow 15=\delta^{t} X \\
& \Longleftrightarrow-\ln \delta=\frac{1}{t} \ln \frac{X}{15}
\end{aligned}
$$

- What is a "reasonable" δ ?
- Economists will say that at a yearly horizon, $\delta \simeq 0.95$.
- Why? People solve

$$
\begin{gathered}
\max _{c_{0}+\frac{c_{1}}{1+r}=W} u\left(c_{0}\right)+\delta u\left(c_{1}\right) \\
L=u\left(c_{0}\right)+\delta u\left(c_{1}\right)-\lambda\left(c_{0}+\frac{c_{1}}{1+r}\right)
\end{gathered}
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
\frac{\partial L}{\partial c_{0}}=0 \\
\frac{\partial L}{\partial c_{1}}=0
\end{array}\right. \\
& \Leftrightarrow\left\{\begin{array}{c}
u^{\prime}\left(c_{0}\right)-\lambda=0 \\
\delta u^{\prime}\left(c_{1}\right)-\frac{\lambda}{1+r}=0
\end{array}\right. \\
& \Rightarrow u^{\prime}\left(c_{0}\right)=\delta(1+r) u^{\prime}\left(c_{1}\right)
\end{aligned}
$$

which is the Euler's equation
One can observe that at the macroeconomic level $c_{0} \simeq c_{1}$ which implies

$$
\delta(1+r)=1 \Rightarrow \delta=\frac{1}{1+r} \simeq 1-r=0.95
$$

where the equilibrium level of the interest rate is $r=5 \%$ per year.

- At the microeconomic level

$$
\begin{aligned}
-\ln \delta & =\frac{1}{t} \ln X / 15 \\
& =\frac{1}{1 / 12} \ln 20 / 15 \\
& =345 \% \text { per year }
\end{aligned}
$$

- Why?
- different attitudes towards small amounts and large amounts
- borrowing constraints
- What makes you indifferent between $\$ 15$ today and $\$ X$ in ten years? ($X=100$)

$$
\begin{aligned}
-\ln \delta & =\frac{1}{\tau} \ln X / 15 \\
& =\frac{1}{10} \ln X / 15 \\
& =19 \% \text { per year }
\end{aligned}
$$

Benzion, Rapoport and Yagil (1989)

- What amount makes you indifferent between $\$ 40$ today and $\$ X$ in half a year? $(X=50)$

$$
40=X \delta^{\tau}
$$

so

$$
\begin{aligned}
-\ln \delta & =\frac{1}{\tau} \ln X / 40 \\
& =\frac{1}{.5} \ln X / 40 \\
& =45 \% \text { per year }
\end{aligned}
$$

- What makes you indifferent between $\$ 40$ today and $\$ X$ in four years? ($X=90$)

$$
\begin{aligned}
-\ln \delta & =\frac{1}{\tau} \ln X / 40 \\
& =\frac{1}{4} \ln X / 40 \\
& =20 \% \text { per year }
\end{aligned}
$$

- In most experiments, shifting out both rewards by the same amount of time lowers the implied discount rate (e.g., Kirby and Herrnstein, Psychological Science, 1996).
- For example, $\$ 45$ right now is preferred to $\$ 52$ in 27 days.

$$
\begin{aligned}
-\ln \delta & >\frac{1}{27 / 365} \ln 52 / 45 \\
& =195 \% \text { per year }
\end{aligned}
$$

- But, $\$ 45$ in six days is inferior to $\$ 52$ in 33 days (now $-\ln \delta<195 \%$ per year).
- With exponential discounting, no preference reversal i.e. if X now $>Y$ in Δt, then X at $t>Y$ at $t+\Delta t$. Indeed
$-X$ now $>Y$ in $\Delta t \Leftrightarrow X \geq \delta^{\Delta t} Y$
- X at $t>Y$ at $t+\Delta t \Leftrightarrow \delta^{t} X \geq \delta^{t+\Delta t} Y$
- here $X=\$ 45, Y=\$ 52, \Delta t=27$ days and $t=6$ days.

Vast body of experimental evidence, demonstrates that discount rates are higher in the short-run than in the long-run.

Consider a final thought experiment:

- Choose a ten minute break today or a fifteen minute break tomorrow.
- Choose a ten minute break in 100 days or a fifteen minute break in 101 days.
- If $V=\sum \Delta(t) u\left(c_{t}\right)$, what is $\Delta(t)$
- big reward: U_{B}
- small reward: U_{S}
$-t_{1}=1$ day, $t=100$ days

$$
\left.\begin{array}{c}
U_{S} \Delta(0)>U_{B} \Delta\left(t_{1}\right) \\
U_{S} \Delta(t)<U_{B} \Delta\left(t+t_{1}\right)
\end{array}\right\} \Rightarrow \frac{\Delta\left(t_{1}\right)}{\Delta(0)}<\frac{U_{S}}{U_{B}}<\frac{\Delta\left(t+t_{1}\right)}{\Delta(t)}
$$

minus 1 and divide by t_{1} both sides $\Rightarrow \frac{\frac{\Delta\left(t_{1}\right)-\Delta(0)}{t_{1}}}{\Delta(0)}<\frac{\frac{\Delta\left(t+t_{1}\right)-\Delta(t)}{t_{1}}}{\Delta(t)}$

$$
\begin{equation*}
\text { when } t_{1} \longrightarrow 0, \frac{\Delta^{\prime}(0)}{\Delta(0)}<\frac{\Delta^{\prime}(t)}{\Delta(t)} \tag{1}
\end{equation*}
$$

Rewrite the discounting function as

$$
\Delta(t)=e^{-\int_{0}^{t} \rho(s) d s}
$$

where ρ is the discount rate or the rate of time discounting (it measures the impatience), the higher ρ the more impatient. Note that with exponential preferences $\rho(s)=-\ln \delta$ as $\Delta(t)=e^{t \ln \delta}$. Generalize (1) for $t>\tau>0$

$$
\frac{\Delta^{\prime}(0)}{\Delta(0)}<\frac{\Delta^{\prime}(\tau)}{\Delta(\tau)}<\frac{\Delta^{\prime}(t)}{\Delta(t)}
$$

and note that $\frac{\Delta^{\prime}(t)}{\Delta(t)}=-\rho(t)$

$$
\Rightarrow \rho(0)>\rho(\tau)>\rho(t)
$$

i.e. ρ is decreasing

