
Economics 142: Probabilistic judgment                                                                   Winter 2008 
Vincent Crawford (with large debts to Colin Camerer and especially Botond Koszegi and 
Matthew Rabin) 
 
Most economic decisions are made in dynamic settings with some uncertainty, and so require 
probabilistic judgment to draw correct inferences from observations and form correct beliefs. 
 
The standard economic assumption has been that people make such decisions optimally, using 
the laws of probability theory. But just as considering evidence on choice behavior led us to 
question some of the standard assumptions about preferences, evidence can also lead us to 
question standard assumptions about probabilistic judgment and the formation of beliefs.  
 
Led by Kahneman and Tversky (1974 Science) and others, psychologists and economists have 
used deviations between intuitive probability judgments and normative principles (“biases”) to 
suggest general principles of how probabilistic judgment deviates from rationality.  
 
Their approach was inspired by theories of perception, which use optical illusions to suggest 
principles of vision without implying that everyday visual perception is badly maladaptive. 
 
Although the use of heuristics and the resulting biases can lead to choices that are suboptimal 
when judged by the standards of mainstream economics, the point of this line of research is 
not to argue that humans are stupid: Heuristics need not be maladaptive. 



Generalizations from Tversky and Kahneman’s “Heuristics and Biases” (Science 1974) 

 



Tversky and Kahneman’s viewpoint is that there are two interacting systems in cognition: 
 
● The intuitive system uses heuristics that sometimes get things wrong from the point of view 
of conscious reasoning; but it is fast, automatic, effortless, and difficult to control or modify. It 
is adaptive because it gets things approximately right when it is important to act quickly.     
 
● Conscious reasoning is a slow but sophisticated process that is very flexible and can be 
changed and improved by learning; but it can only concentrate on one thing at a time, and it 
requires effort and control. 
 
Choice is the product of a continual interaction between these two systems, in which conscious 
reasoning struggles to override intuition, But even when the evidence against intuition is strong, it 
fights back and sometimes wins. 
 
Errors or biases in judgment are the unintended side effects of generally adaptive processes.  
 
Most probability theory is plainly more in the realm of conscious reasoning than intuition, so 
intuitive probability judgments are unlikely to be fully rational. 
  
Just as one can learn a lot about vision from optical illusions, one can learn a lot about 
probabilistic judgment by studying its biases. Because the mainstream alternative is assuming 
that people have perfect probabilistic judgment, there is considerable value in studying biases. 



Bayes’ Rule (Koszegi) 
 
The key component of rational probabilistic judgment is Bayes’ Rule. To understand Bayes’ 
rule, suppose you have a coin, but you do not know whether it is fair. You start off thinking 
that it is fair—so that it gives heads 50% of the time—with probability two-thirds, and it is 
biased toward heads—so that it gives heads 75% of the time—with probability one-third. 
 
Now imagine that you flip the coin and it comes up heads. How would you have to change 
your beliefs about the probability that the coin is fair? You would clearly have to decrease it, 
since a head outcome is more likely to come from a biased coin. But by how much? 
 
 
A fair coin is like an urn in which exactly half the balls say heads, and half say tails: the 
probability of getting heads on a flip of the coin is the same as the probability of getting a 
“heads” ball when drawing randomly from the urn. 
 
The biased coin is like an urn in which 75% or the balls say heads, and 25% say tails. 
 
You are drawing a ball from one of these urns, but you do not know which one. So imagine 
you are drawing a ball from one big urn, with the two small urns combined inside it. 



What does it mean that you think the coin is fair with probability two-thirds? It means that the 
urn in which exactly 50% of the balls say heads and 50% say tails has twice as many balls, in 
total, as the one in which 75% of the balls say heads and 25% say tails. In other words, when 
drawing a ball from the big urn, you think it is twice as likely to come from the fair urn as 
from the unfair urn. 
 
These probabilities can be represented by letting the unfair urn have four balls in total, three 
heads and one tails, and letting the fair urn have eight balls in total, four heads and four tails. 
 
We can now see how much you should change your beliefs about the probability that the coin 
is fair if you flip the coin once and it comes up heads. Suppose we draw a ball from the big urn 
and it says heads. What is the probability that it came from the fair urn? There are four heads 
balls in the fair urn and three in the unfair one, for a total of seven. So the probability is 4/7. 
 
We have just derived Bayes’ rule for this example: More generally, the probability of 
hypothesis h being true, conditional on observing information i, is Prob[hypothesis 
h|information i] = Prob[i and h are both true]/Prob[i is true]. 
 
In the coin example, the hypothesis h is that the coin is fair. The information is that when 
flipped once, it came up heads. The number of ways hypothesis h and information i can both 
be true is the number of ways to draw a heads ball from the fair urn—that is, 4. The number of 
ways i can be true is the number of ways to draw a heads ball from the big urn—that is, 7. 



Base rate neglect 
 
Now considering some experimental evidence on probabilistic judgment, beginning with survey 
questions 3 and 4 (a and b). Both fall under the heading of a bias called base rate neglect. 
 
Survey question 3: Suppose that one out of a hundred people in the population have HIV. There 
is a test for HIV that is 99% accurate. This means that if a person has HIV, the test returns a 
positive result with 99% probability; and if a person does not have HIV, it returns a negative 
result with 99% probability. If a person’s HIV test comes back positive (and you know nothing 
else about her/him), what is the probability that s/he has HIV? 
 
Most people answer 99%. This is wrong. The correct answer, 50%, can be found in two ways.  
 
● The intuitive argument in the Introduction is one: An HIV-negative person is 99 times less 
likely to test positive than an HIV-positive person, but there are 99 times more HIV-negative 
people. These cancel out, so the probability that a person testing positive has HIV is 50%. 



● Bayes’ Rule is a more systematic way: It says that the probability that a person whose HIV 
test comes back positive has HIV is the ratio of the probability that {a person’s test comes 
back positive and the person has HIV} to the probability that {a person’s test comes back 
positive}.  

The probability that {a person’s test comes back positive and the person has HIV} under the 
stated conditions is 0.01×0.99, because 1% of the population have HIV and the test gives the 
right answer for 99% of them. 

The probability that {a person’s test comes back positive} is the sum of two terms: the same 
0.01×0.99 from the people who do have HIV, plus another 0.99×0.01 from the 99% of the 
population who don’t have HIV and the test gives the wrong (positive) answer for 1% of them. 

Thus Bayes’ Rule gives the probability that a person whose HIV test comes back positive 
actually has HIV as (0.01×0.99)/[(0.01×0.99) + (0.99×0.01)] = ½, like the intuitive argument.    
 
As both Bayes’ Rule and the intuitive argument show, the problem with the common answer is 
that it ignores the base rate (“one out of a hundred people in the population have HIV”). 
Unless the test is perfectly accurate, even intuition suggests that the base rate is relevant 
(though not how to combine it with the test result), but people tend to ignore it anyway.  
 
Ignoring the base rate makes people systematically overestimate the probability of rare 
events—such as a person having HIV—because it ignores their rarity; and it makes them 
underestimate the probability of common events—such as a person not having HIV. 



To see base rate neglect in a different way, consider survey questions 4 (a and b): 

4a. Jack’s been drawn from a population which is 30% engineers and 70% lawyers. Jack 
wears a pocket protector. Use your own estimate of the respective probabilities that engineers 
and lawyers wear pocket protectors to estimate the probability p1 that Jack is an engineer. 

4b. Jack’s been drawn from a population which is 30% lawyers and 70% engineers. Jack 
wears a pocket protector. Use your own estimate of the respective probabilities that lawyers 
and engineers wear pocket protectors to estimate the probability p2 that Jack is an engineer. 

People’s average estimates for p1 and p2 are virtually the same. 

The right estimates depend on the estimated probabilities that lawyers and engineers wear 
pocket protectors, which we don’t know; but even so we can tell that it’s wrong to have the 
same estimates for p1 and p2: 

If q is your estimated probability that a lawyer wears a pocket protector and r is your 
estimated probability that an engineer wears a pocket protector, then, using Bayes’ Rule again, 
p1 = 0.3r/[0.3r+0.7q] and p2 =  0.7r/[0.7r+0.3q]. 

Thus p1/(1- p1) = 0.3r/0.7q and p2/(1- p2) = 0.7r/0.3q, so [p1/(1- p1)]/ [p2/(1- p2)] = (0.3/0.7)2 
≈ 

18%. (q and r cancel out.) 

Again, people ignore the base rate and so systematically overestimate the probability of the 
rare event (engineer dresses well) and underestimate the probability of the common event.  



Representativeness 

Consider the following example (Kahneman and Tversky, 1973 Psychological Review): 

“Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. As a 
student, she was deeply concerned with issues of discrimination and social justice, and also 
participated in anti-nuclear demonstrations.” 

Please rank the following statements by their probability, using 1 for the most probably and 8 for 
the least probable: 

1. Linda is a teacher in elementary school. 

2. Linda works in a bookstore and takes Yoga classes. 

3. Linda is active in the feminist movement. 

4. Linda is a psychiatric social worker. 

5. Linda is a member of the League of Women Voters. 

6. Linda is a bank teller. 

7. Linda is an insurance salesperson. 

8. Linda is a bank teller and is active in the feminist movement. 



I now repeat them with typical average probability rankings in parentheses: 

1. Linda is a teacher in elementary school. (5.2) 

2. Linda works in a bookstore and takes Yoga classes. (3.3) 

3. Linda is active in the feminist movement. (2.1) 

4. Linda is a psychiatric social worker. (3.1) 

5. Linda is a member of the League of Women Voters. (5.4) 

6. Linda is a bank teller. (6.2) 

7. Linda is an insurance salesperson. (6.4) 

8. Linda is a bank teller and is active in the feminist movement. (4.1) 
 
Note that item 8 is ranked more likely than item 6; depending on the subject population (but even 
extending to professional statisticians), 70%-90% rank them in this order. 



This is wrong! (Why?)  
 
Kahneman and Tversky call this the conjunction effect (since the conjunctive event receives a 
higher probability.) 
 
This same phenomenon shows up in many other forms. 
 
Why does it happen? Kahneman and Tversky and others have argued that it’s because decision 
makers use similarity as a proxy for probability. Based on the available information, they form a 
mental image of what Linda is like. When asked about the likelihood that Linda is a school 
teacher, bank teller, feminist, and so on, they ask themselves how similar is my picture of Linda to 
a typical school teacher, bank teller, or feminist? They then turn this similarity judgment into a 
probability, with more similarity implying a higher probability. 

The similarity between a Linda and a feminist bank teller is greater than the similarity between 
Linda and a bank teller, so they judge item 8 as more likely than item 6. 

But by the laws of probability, the probability that Linda is a feminist bank teller must be less 
than the probability that she is a bank teller—the conjunction rule. 
 
The problem is that similarity relations do not follow the conjunction rule, a basic law of 
probability. 
 
Base rate neglect is closely related to representativeness.



Sample size neglect 
 
Consider the following example  (Kahneman and Tversky, 1974 Science): 
 
A certain town is served by two hospitals. In larger hospital, 45 babies are born per day. In smaller 
hospital, 15 babies are born per day. 50% of babies are boys, but the exact percentage varies from 
day to day. For a period of 1 year, each hospital recorded the days on which more than 60% of the 
babies born were boys. 
 
Which hospital do you think recorded more such days? 
 
● The large hospital? 
 
● The small hospital? 
 
● About the same (within 5% of each other) 
 
Most people think they are about the same.  
 
This is wrong! (Why?) 
 
Why does it happen? Also closely related to representativeness: Subjects assess the likelihood of a 
sample result by asking how similar that sample result is to the properties of the population from 
which the sample was drawn. 



“Law of small numbers”  

All families of six children in a city were surveyed. In 72 families the exact order of births of boys 
and girls was GBGBBG. What is your estimate of the number of families surveyed in which the 
exact order of births was BGBBBB? 

In standard subject pools the median estimate is 30. This is wrong! (Why?) 

Why does it happen? Also closely related to representativeness: 

● People expect that a sequence of events generated by a random process will reflect the essential 
characteristics of that process even if the sequence is short. (The law of large numbers says that 
very large samples drawn from a probability distribution very accurately reflect the probabilities 
in the distribution. People mistakenly apply the same idea to small samples.) 

● So if a coin is fair, subjects expect HHH to be followed by a T (the gambler’s fallacy: the 
false belief that in a sequence of independent draws from a distribution, an outcome that has 
not occurred for a while is more likely to come up on the next draw). 

● If girls are as likely as boys, subjects expect GGG to be followed by B. 

● So BGGBBG is viewed as a much more likely sequence than BBBBBB. 

● People expect that the essential characteristics of the process will be represented, not only 
globally in the entire sequence, but also locally in each of its parts. 



More on sample-size neglect and the “law of small numbers” (Rabin) 

 

 





 
 
 
Proof: The Bayesian posterior probability that the bias (Pr{h}) is 3/5 given that you observe h heads 
and t tails is the probability that you observe h heads and t tails if the bias is 3/5 divided by the total 
probability that you observe h heads and t tails summed over both possible biases. Thus (canceling 
out the “number of ways we can get h heads” terms in the numerator and denominator),  
 
posterior probability that Pr{h} = 3/5 = [(3/5)h (2/5)t]/{(3/5)h (2/5)t + (2/5)h (3/5)t}. 
 
Dividing the numerator and denominator through by [(3/5)h (2/5)t] gives  
 
posterior probability that Pr{h} = 3/5 = 1/{1 + (2/5)h-t (3/5)t-h} = 1/{1 + (2/3)h-t}. 
 
This formula yields the posteriors in the tables below. 





 



 



Rabin on general modeling strategy: 
 
I believe it is very useful to emphasize the study of systematic departures from correct 
Bayesian information processing, always focusing on the Bayesian model as a base-line com- 
parison. This is not the only reasonable approach to studying bounded rationality. But I 
think it makes a lot of sense because: 
 
1. Bayesian rationality is what our models now assume. Note: A mini-literature in psychology 
responds to the K&T hypothesis that “In general, these heuristics are quite useful, but sometimes 
they lead to severe and systematic biases” with the rebuttal “No–while these heuristics may 
sometimes lead to severe and systematic biases, in general they are quite useful.” Irrespective of 
the merits of having such a debate in psychology, it is clear given the current status of economics 
that economists are more in need of understanding the 2nd half of the first sentence than the 2nd 
half of the second sentence. Economists haven’t omitted emphasis on the ways people are smart; 
we have assumed that people are inhumanly smart. The relevant insights for us are clearly 
identifying the sever and systematic biases. 
 
2. This approach promotes emphasis on how probabilistic reasoning is not random or totally 
irrational. Central point to understand the heuristics-and-biases literature: Bounded Ratio- 
nality = Randomness, and is a form of human rationality, not inhuman idiocy. 
 
3. Bayesian updating is the unique normatively right way to process information. 



4. Sticking as closely as possible to the Bayesian approach helps us take advantage of the 
existing apparatus in economics for thinking about statistical reasoning. 
 
5. And it would be nice to follow the approach taken throughout the course and much 
of the psychology-and-economics literature: Model departures from “classical” models as 
contentions about parameter values in general models that embed the classical model as 
a special case. Embedding fully rational Bayesian updating as special cases of generalized 
models allows us to do good comparative statics and see where our results are coming from, 
and facilitates direct empirical testing. 

 
Camerer on general modeling strategy 
 

The Bayesian approach is so simple and useful that it is hard to find equally simple formal 
alternatives consistent with Kahneman and Tversky’s heuristics. An appealing way to do so is to 
use the Bayesian framework but assume that people misspecify or misapply it in some way. 
 
For example, Rabin and Schrag (QJE 1999) define “confirmatory bias” as the tendency to 
perceive data as more consistent with a prior hypothesis than they truly are; their model is 
otherwise fully Bayesian. 
 
For example, Rabin (QJE 2002) models representativeness as the (mistaken) expectation that 
samples are drawn without replacement, and shows some fresh implications of that model (e.g, 
perceiving more skill among managers than truly exists). 



Modeling representativeness (Koszegi following Rabin (QJE 2002)) 
 
A person, “Freddy” in the paper, observes a sequence of binary signals of some quality, 
“good” or “bad.”  
 
The signals are random, with a constant probability (“rate”) of being good, which Freddy has a 
correct Bayesian prior about. 
 
Although the signals are really i.i.d., Freddy believes that they are generated by random draws 
without replacement from an “urn” of N signals, where the urn contains signals in proportions 
corresponding to the rate. 
 
Other than misunderstanding the statistical process generating the outcomes, Freddy is 
completely rational: he always makes the correct inferences (and uses Bayes’ rule) given his 
wrong theory of the world. 
 
N → ∞ implies the person’s inferences approach Bayesian rationality; N → 0 implies they are 
more distorted. 
 
The urn is completely replenished every 2 periods: A mathematical trick. (Convenient but less 
natural than continuous replenishment as in Rapoport and Budescu, “Randomization in 
Individual Choice Behavior,” Psychological Review (1997): People maintain window of k 
previous trials. Predict next trial t + 1 will “balance” subsequence of k + 1 (i.e., make relative 
proportions = probabilities).) 



This model immediately (and trivially) yields the “gambler’s fallacy,” in that Freddy expects the 
second draw of a signal to be negatively correlated with the first. 
 
The model also yields some insight into the hot hand fallacy and other puzzles. Virtually every 
sports fan believes that there is a systematic variation in the performance of each player from 
day to day, that the performance of a player during a particular period may be predictably 
better than expected on the basis of the player’s overall record. This was carefully tested, and 
rejected, for professional basketball by Gilovich, Vallone, and Tversky (1985 Cognitive 
Psychology). But people still believe it.  
 
The hot hand fallacy at first seems the opposite of the gambler’s fallacy: The gambler’s fallacy 
is the belief that the next outcome is likely to be different from previous ones, whereas the hot 
hand fallacy is the belief that the outcome is likely to be similar to previous ones. 
 
But both the gambler’s fallacy and the hot hand fallacy can be explained by this way of 
modeling representativeness. Intuitively, the gambler’s fallacy means people do not expect to 
see many streaks in a person’s performance. When they do see many streaks over a long 
period, the sequence will not feel representative of a completely independent random process. 
Hence, they will conclude that the person must have had a hot hand. This is the only way they 
can “rationally” explain the unexpected streaks they have observed. 



First imagine that Freddy is playing roulette. He knows that the proportion of reds and blacks 
over time are equal. 
 
Suppose N = 10, and that red came up twice in a row. That N = 10 means that Freddy started 
off thinking that there were 5 red and 5 black balls in the run. With two red balls gone, Freddy 
expects the next draw to be black with probability 5/8 > 1/2. That is, Freddy commits the 
gambler’s fallacy. Intuitively, since he expects empirical proportions in small samples to 
resemble the true proportions, he expects initial imbalances to “correct themselves.” 
 
 
Now imagine that Freddy is trying to infer the skill level of a mutual-fund manager called 
Helga, where he does not know the probabilities of relevant outcomes. Freddy knows whether 
Helga has beaten the market average when running her managed fund zero times, once, or 
twice each of the last two quarters. He does not know Helga’s skill level. 
 
There is a probability q that Helga always beats the market, a probability q that she never beats 
the market, and a probability 1 − 2q that she beats the market with probability 1/2. Freddy has 
correct priors about the likelihood that Helga is skilled or unskilled.  
 
In reality, a mediocre Helga’s performance is independent from quarter to quarter. 



Suppose that N = 2. What does Freddy think may happen? He correctly thinks that an 
unskilled Helga will fall short of the market both times and a skilled Helga will beat the 
market both times, but he thinks a mediocre Helga will beat the market exactly once and fall 
short of the market exactly once. As before, Freddy commits the gambler’s fallacy: If he 
observes a mediocre Helga performing well, he thinks she is due for a bad performance. 
 
What will Freddy infer after observing Helga having two good quarters in a row? He thinks 
only a skilled Helga can perform this well, so he will infer that Helga is skilled for sure. By 
the same logic, if Freddy he observes two bad performances in a row, he will conclude that 
Helga is unskilled for sure. Freddy overinfers Helga’s skill from a small sample of extreme 
performances—he draws a more extreme conclusion than is justified by his observations. 
 
This overinference is rooted in the same representativeness that is behind the gambler’s 
fallacy. Since Freddy believes in the gambler’s fallacy, he expects the mediocrity of Helga’s 
decisions to be quickly reflected in a quarter of bad performance. Hence, he thinks that a 
couple of good performances indicate high skill. 
 
Freddy’s overinference regarding Helga’s skill can lead him to several mistakes. First, he may 
be too eager to invest his money in Helga’s fund if it has performed well recently. He will 
then be surprised when Helga’s two good performances are followed (as is all too likely) by a 
bunch of average performances. That is, he underestimates “reversion to the mean”. 
 
If Helga follows her quarters of good performance with mediocre ones, Freddy may move his 
money pointlessly between investments. 



Now consider what conclusion Freddy draws from a pair of mixed performances. He believes 
that only a mediocre Helga can have such performances, and he is in fact correct in this belief.  
Hence, Freddy overinfers only from extreme performances. Intuitively, the mistake Freddy 
makes is to underestimate the probability that a streak of good or bad performances arises 
purely by chance, so that he attributes extreme performances to skill. There is no similar 
mistake he makes with mixed performances. 
 
Freddy’s overinference about Helga’s skill from a short sequence of good performances is 
exactly like a false belief in the hot hand: He too easily concludes that Helga’s skill is “hot.” 
But this can only happen because Freddy thinks it is a priori possible that Helga is a skilled 
manager. 



However, the model implies that Freddy will come to believe this even if it is not the case: 
Upon observing the world, he will come to believe that there is variation in manager skill 
when in fact there is none. 
 
Suppose Freddy does not have a good idea about the distribution of skills among mutual- 
fund managers, and is trying to learn this from observing the performance of mutual funds. 
 
Consider an extreme case: in reality all mutual-fund managers are mediocre, beating the 
market each quarter with probability one-half. 
 
Freddy observes two quarters of performance by a large number of mutual funds. Since in 
reality all managers are mediocre and have independent performances, Freddy will observe 
that one-quarter of the mutual funds beat the market twice, half beat the market once, and one-
quarter do worse than the market twice. But Freddy falsely believes that only skilled mutual-
fund managers can beat the market twice in a row, so he concludes that one-quarter of the 
mutual-fund managers are skilled. Similarly, he concludes that one-quarter of the mutual-fund 
managers are unskilled. That is, he overestimates the variation in skill in the population. 
 
Intuitively, since Freddy believes in the gambler’s fallacy, he thinks streaks of good or bad 
performance are unlikely. So if he watches several analysts for two quarters, because he 
underestimates how often average analysts will have consecutive successful or unsuccessful 
years, he interprets what he sees as evidence of the existence of good and bad analysts. 



This sort of analysis can be done with tedious algebra for less extreme cases (Rabin):  



From Rabin (QJE 2002) 

 
 



By contrast, if Freddy observed a large number of signals from each of several different 
sources, then he is too likely to believe that the rate is less extreme than it is. 
 
This is because he struggles to explain why he is observing so many streaks of rare signals, 
which he thinks are very unlikely. 
 
To explain such streaks, he may come to believe that the true rate is close to 50/50, even if this 
does not accord with the overall frequency of the signals, assuming that there is underlying 
variation even when there is none. 
 
Such a false belief corresponds to the hot hand fallacy. 

 
See Rabin and Vayanos, “The Gambler's and Hot-Hand Fallacies in a Dynamic-Inference Model”. 

 



Further Issues (not covered in class) 
 
Overconfidence 
 
98% confidence interval only captures 60% of the distribution. 
100% is actually 80% and 0% is actually 20% 
 
Optimism/Wishful Thinking 
 
Unrealistic view of personal abilities/prospects 
90% of drivers claim above average skill 
99% of freshman claim superior intelligence 
 
Confirmatory Bias 
 
People selectively either ignore or misread further (ambiguous) information as supporting initial 
hypotheses. That is, once a person has formed a strong hypothesis about what is true, she tends to 
selectively ignore contrary evidence and carefully consider supporting evidence. 
 
Anchoring 
 
People often try to answer a question by starting at some first-pass guess based on memory or the 
environment, and then adjusting that guess until they are satisfied with the answer. Even after the 
adjustment, people’s judgment seems to be colored by their original guess or anchor. 



Availability Biases 
 
People often assess the frequency of a class or the probability of an event by the ease with which 
instances or occurrences can be brought to mind. To answer questions such as “What percentage 
of commercial flights crash per year?”; “What is the risk of heart attack among middle-aged 
men?”; or “Are there more suicides or more homicides in the United States each year?”, most 
people (who do not know the answer) try to recall instances of plane crashes, heart attacks, 
suicides, or murders they have heard about from acquaintances or in the news. The easier they can 
recall instances of the event, the more likely they perceive it to be. 
 
Curse of Knowledge 
 
The hindsight bias is closely related to the curse of knowledge. People cannot abandon their 
own perspective, even when they know others are in a different situation, and they are highly 
motivated to communicate well.  
 
Incomplete Debiasing 
 
Suppose a person is told that A is true, where A leads to some conclusion X. Then, she is told 
that A is actually not true—it was a mistake—and she believes this. Despite this, she will 
believe in X more than if she never heard A. 

 


