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Most economic decisions are made in dynamic sattimth some uncertainty, and so require
probabilistic judgment to draw correct inferencesf observations and form correct beliefs.

The standard economic assumption has been thalep®afe such decisions optimally, using
the laws of probability theory. But just as considg evidence on choice behavior led us to
guestion some of the standard assumptions abdear@nees, evidence can also lead us to
guestion standard assumptions about probabilistigment and the formation of beliefs.

Led by Kahneman and Tversky (199%zlence) and others, psychologists and economists have
used deviations between intuitive probability judants and normative principles (“biases”) to
suggest general principles of how probabilistigjongnt deviates from rationality.

Their approach was inspired by theories of peroaptivhich use optical illusions to suggest
principles of vision without implying that everydsaisual perception is badly maladaptive.

Although the use of heuristics and the resultirasbs can lead to choices that are suboptimal
when judged by the standards of mainstream ecospihie point of this line of research is
not to argue that humans are stupid: Heuristice ne¢ be maladaptive.



Generalizations from Tversky and Kahneman’s “Heurigdics and Biases” §cience 1974)

Twversky and Kahneman (1974) conceptualize observed departures from perfect rationality in
Judgment under uncertainty by noting that

... people rely on “heuristic principles which reduce the complex tasks of assessing
probahbilities and predicting values to simpler judgmental operations. In general,
thesze heuristics are quite useful. but sometimes they lead to severe and systematic
errors.”

Tversky and Kahneman also provide an apt metaphor for this approach:

The subjective assessment of probability rezembles the subjective assessment of
physical quantities such as distance or size. These judgments are all based on data
of imited valdity, which are processed according to heuristic rules. For example,
the apparent distance of an ohject 15 determined in part by 1ts clarityv. The more
sharply the object 15 seen. the closer it appears to be. This rule has some vahdity,
hecause in any given scene the more distant objects are seen less sharply than
nearer ohjects. However, the reliance on thiz rule leads to zystematic errors n
the estimation of distance. Specifically, distances are often overestimated when
visibility 15 poor because the contours of objects are blurred. On the other hand,
distances are often underestimated when vizibility 12 good because the ohjects are
seen sharplyv. Thus, the reliance on clarity as an indication of distance leads to
common biases. Such biases are also found in the intuitive jJudgment of probability.



Tversky and Kahneman'’s viewpoint is that theretameinteracting systems in cognition:

e The intuitive system uses heuristics that somegiges things wrong from the point of view
of conscious reasoning; but it is fast, automatifortless, and difficult to control or modify. It
IS adaptive because it gets things approximatght ivhen it is important to act quickly.

e Conscious reasoning is a slow but sophisticatedgss that is very flexible and can be
changed and improved by learning; but it can oplycentrate on one thing at a time, and it
requires effort and control.

Choice is the product of a continual interactioms®n these two systems, in which conscious
reasoning struggles to override intuition, But ewdmen the evidence against intuition is strong, it
fights back and sometimes wins.

Errors or biases in judgment are the unintendesl aifiects of generally adaptive processes.

Most probability theory is plainly more in the meabf conscious reasoning than intuition, so
intuitive probability judgments are unlikely to hdly rational.

Just as one can learn a lot about vision from apltlicisions, one can learn a lot about
probabilistic judgment by studying its biases. Bsgathe mainstream alternative is assuming
that people have perfect probabilistic judgmergrens considerable value in studying biases.



Bayes’ Rule (Koszegi)

The key component of rational probabilistic judgmisrBayes’ Rule. To understand Bayes’
rule, suppose you have a coin, but you do not kwbether it is fair. You start off thinking
that it is fair—so that it gives heads 50% of tineet—with probability two-thirds, and it is
biased toward heads—so that it gives heads 75%edirhe—with probability one-third.

Now imagine that you flip the coin and it comeshgads. How would you have to change
your beliefs about the probability that the coifias? You would clearly have to decrease it,
since a head outcome is more likely to come frdmraaed coin. But by how much?

A fair coin is like an urn in which exactly halfétballs say heads, and half say tails: the
probability of getting heads on a flip of the c@rthe same as the probability of getting a
“heads” ball when drawing randomly from the urn.

The biased coin is like an urn in which 75% orltlaéls say heads, and 25% say tails.

You are drawing a ball from one of these urns yout do not know which one. So imagine
you are drawing a ball from one big urn, with th® tsmall urns combined inside it.



What does it mean that you think the coin is fathyrobability two-thirds? It means that the
urn in which exactly 50% of the balls say heads 30fb say tails has twice as many balls, in
total, as the one in which 75% of the balls saydBend 25% say tails. In other words, when

drawing a ball from the big urn, you think it isib@ as likely to come from the fair urn as
from the unfair urn.

These probabilities can be represented by lethiagihfair urn have four balls in total, three
heads and one tails, and letting the fair urn feaght balls in total, four heads and four tails.

We can now see how much you should change yowsfbabout the probability that the coin

is fair if you flip the coin once and it comes wgalds. Suppose we draw a ball from the big urn
and it says heads. What is the probability theaihe from the fair urn? There are four heads
balls in the fair urn and three in the unfair ofioe,a total of seven. So the probability is 4/7.

We have just derived Bayes’ rule for this exampMere generally, the probability of
hypothesis h being true, conditional on observirigrmation i, is Prob[hypothesis
hlinformation i] = Prob[i and h are both true]/Fjiab true].

In the coin example, the hypothesis h is that the s fair. The information is that when
flipped once, it came up heads. The number of lgpsthesis h and information i can both
be true is the number of ways to draw a headdroall the fair urn—that is, 4. The number of
ways i can be true is the number of ways to drdeads ball from the big urn—that is, 7.



Base rate neglect

Now considering some experimental evidence on fmbsac judgment, beginning with survey
guestions 3 and 4 (a and b). Both fall under ttslimgy of a bias called base rate neglect.

Survey question 3: Suppose that one out of a hdmueple in the population have HIV. There
Is a test for HIV that is 99% accurate. This meas if a person has HIV, the test returns a
positive result with 99% probability; and if a pensdoes not have HIV, it returns a negative
result with 99% probability. If a person’s HIV tasimes back positive (and you know nothing
else about her/him), what is the probability thhedhas HIV?

Most people answer 99%. This is wrong. The comestver, 50%, can be found in two ways.

e The intuitive argument in the Introduction is oA& HIV-negative person is 99 times less
likely to test positive than an HIV-positive perstmit there are 99 times more HIV-negative
people. These cancel out, so the probability th@raon testing positive has HIV is 50%.



e Bayes’ Rule is a more systematic way: It saysttiafprobability that a person whose HIV
test comes back positive has HIV is the ratio efgihobability that {a person’s test comes
back positive and the person has HIV} to the prdiglthat {a person’s test comes back
positive}.

The probability that {a person’s test comes backitpe and the person has HIV} under the
stated conditions is 0.01x0.99, because 1% of dpealption have HIV and the test gives the
right answer for 99% of them.

The probability that {a person’s test comes backitpe} is the sum of two terms: the same
0.01x0.99 from the people who do have HIV, plustb@n0.99x0.01 from the 99% of the
population who don’t have HIV and the test giveswrong (positive) answer for 1% of them.

Thus Bayes’ Rule gives the probability that a pensthose HIV test comes back positive
actually has HIV as (0.01x0.99)/[(0.01x0.99) + @x0.01)] = Y%, like the intuitive argument.

As both Bayes’ Rule and the intuitive argument shibv problem with the common answer is
that it ignores the base rate (“one out of a huhgeople in the population have HIV”).
Unless the test is perfectly accurate, even imtniisiuggests that the base rate is relevant
(though not how to combine it with the test resudt)t people tend to ignore it anyway.

Ignoring the base rate makes people systematioadiyestimate the probability of rare
events—such as a person having HIV—because it égribieir rarity; and it makes them
underestimate the probability of common events—ssch person not having HIV.



To see base rate neglect in a different way, censidrvey questions 4 (a and b):

4a. Jack’s been drawn from a population which B &#hgineers and 70% lawyers. Jack
wears a pocket protector. Use your own estimatbeofespective probabilities that engineers
and lawyers wear pocket protectors to estimat@tbleability p, that Jack is an engineer.

4b. Jack’s been drawn from a population which &3awyers and 70% engineers. Jack
wears a pocket protector. Use your own estimatbeofespective probabilities that lawyers
and engineers wear pocket protectors to estimatpribbabilityp, that Jack is an engineer.

People’s average estimates fwrandp, are virtually the same.

The right estimates depend on the estimated pridsedbthat lawyers and engineers wear
pocket protectors, which we don’t know; but evemsocan tell that it's wrong to have the
same estimates f@q andp,:

If g is your estimated probability that a lawyer wearsocket protector ards your
estimated probability that an engineer wears a gtggiotector, then, using Bayes’ Rule again,
p. = 0.3/[0.3r+0.7q] andp,= 0.#/[0.7r+0.3].

Thuspi/(1- py) = 0.3/0.7q andp,/(1- p;) = 0.7/0.3q, so p/(1- p))/ [p/(1- p2)] = (0.3/0.75 =
18%. @ andr cancel out.)

Again, people ignore the base rate and so systealigtoverestimate the probability of the
rare event (engineer dresses well) and underestitnatprobability of the common event.



Representativeness
Consider the following example (Kahneman and Twer&R73Psychological Review):

“Linda is 31 years old, single, outspoken, and Jerght. She majored in philosophy. As a
student, she was deeply concerned with issuesofighiination and social justice, and also
participated in anti-nuclear demonstrations.”

Please rank the following statements by their podityg, using 1 for the most probably and 8 for
the least probable:

Linda is a teacher in elementary school.

Linda works in a bookstore and takes Yoga ctasse
Linda is active in the feminist movement.

Linda is a psychiatric social worker.

Linda is a member of the League of Women Voters.
Linda is a bank teller.

Linda is an insurance salesperson.
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. Linda is a bank teller and is active in the feistimovement.



| now repeat them with typical average probabilggkings in parentheses:
Linda is a teacher in elementary school. (5.2)

Linda works in a bookstore and takes Yoga ckagsSe3)

Linda is active in the feminist movement. (2.1)

Linda is a psychiatric social worker. (3.1)

Linda is a member of the League of Women Voiérg.)

Linda is a bank teller. (6.2)

Linda is an insurance salesperson. (6.4)
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Linda is a bank teller and is active in the feistimovement. (4.1)

Note that item 8 is ranked more likely than itendépending on the subject population (but even
extending to professional statisticians), 70%-9@%krthem in this order.



This is wrong! (Why?)

Kahneman and Tversky call this the conjunctionaf{since the conjunctive event receives a
higher probability.)

This same phenomenon shows up in many other forms.

Why does it happen? Kahneman and Tversky and oflaes argued that it's because decision
makers use similarity as a proxy for probabilitasBd on the available information, they form a
mental image of what Linda is like. When asked albioe likelihood that Linda is a school
teacher, bank teller, feminist, and so on, theytaskselves how similar is my picture of Linda to
a typical school teacher, bank teller, or feminigty then turn this similarity judgment into a
probability, with more similarity implying a high@robability.

The similarity between a Linda and a feminist beeller is greater than the similarity between
Linda and a bank teller, so they judge item 8 aserikely than item 6.

But by the laws of probability, the probability tHanda is a feminist bank teller must be less
than the probability that she is a bank teller—abrjunction rule.

The problem is that similarity relations do notida the conjunction rule, a basic law of
probability.

Base rate neglect is closely related to represeatass.



Sample size neglect

Consider the following example (Kahneman and Tkyer$974Science).

A certain town is served by two hospitals. In largespital, 45 babies are born per day. In smaller
hospital, 15 babies are born per day. 50% of babie®€oys, but the exact percentage varies from

day to day. For a period of 1 year, each hospgabnded the days on which more than 60% of the

babies born were boys.

Which hospital do you think recorded more such @ays

e The large hospital?

e The small hospital?

e About the same (within 5% of each other)

Most people think they are about the same.

This is wrong! (Why?)

Why does it happen? Also closely related to repriadweness: Subjects assess the likelinood of a

sample result by asking how similar that sampleltes to the properties of the population from
which the sample was drawn.



“Law of small numbers”

All families of six children in a city were surveyeln 72 families the exact order of births of boys
and girls was GBGBBG. What is your estimate ofrtbenber of families surveyed in which the
exact order of births was BGBBBB?

In standard subject pools the median estimate.i$ 38 is wrong! (Why?)
Why does it happen? Also closely related to repriedweness:

e People expect that a sequence of events gendragedandom process will reflect the essential
characteristics of that process even if the seqensghort. (The law of large numbers says that
very large samples drawn from a probability disttibn very accurately reflect the probabilities
in the distribution. People mistakenly apply themedadea to small samples.)

e So if a coin is fair, subjects expect HHH to biofwed by a T (the gambler’s fallacy: the
false belief that in a sequence of independent sifeam a distribution, an outcome that has
not occurred for a while is more likely to comeaipthe next draw).

e If girls are as likely as boys, subjects expectG3G be followed by B.
e S0 BGGBBG is viewed as a much more likely sequé¢inae BBBBBB.

e People expect that the essential characteristiteqrocess will be represented, not only
globally in the entire sequence, but also locallgach of its parts.



More on sample-size neglect and the “law of smallumbers” (Rabin)

Griffin and Tversky (1992) experiment: Students read the following.

“Imagine that yvou are spinning a coin, and recording how often the coin lands
heads and how often the coin lands tails. Unlike tossing, which (on average) veilds
an equal number of heads and tails, spinning a coind leads to a bias favoring one
zide or the other because of slight imperfectinos on the rim of the coin (and an
uneven distribution of mass). Now imagine that vou know that this bias 13 3/5.
[t tends to land on one zide 3 out of 3 times. But vou do not know 1f this bias 13
in tavor of heads or in favor of tailz.”



-
i

From Griffin-Tversky (1992): Two possible ii.d. coins, a w(h|-) = £ coin and a 7w(h|-) = £
coin. each with prob = 5. Obzerve a set of flips k. {. What 1s inferred?

Sample of (h,t) Median P(6 = £|h,t] Proper Bayes B(6 = £|h.t)

5.0 92 38
10,14 60 38
3.9 60 60
41 80 77
08 54 60
5.4 55 60
6.3 67 77
11.6 64 88
3.0 85 77
21 63 60
7.2 77 38

10.7 60 77



The Fundamental Theorem of Bavesian Inference about Which of Two Svmmetrically Biaszed
Coins have Generated A Sample of Heads and Tails: Proper inference in this setting 1s solely
a tunction of h — ¢, and has nothing to do with & + ¢. Proof: Problem Set Maggie.

Proof: The Bayesian posterior probability that lbiees (Pr{h}) is 3/5 given that you obserkdneads
andt tails is the probability that you obsemrdneads andtails if the bias is 3/5 divided by the total
probability that you obserndeheads antltails summed over both possible biases. Thus é@tizugc
out the “number of ways we can delieads” terms in the numerator and denominator),

posterior probability that Pr{h} = 3/5 = [(3/5§2/5)]/{(3/5)" (2/5) + (2/5)' (3/5)}.
Dividing the numerator and denominator through @yd)" (2/5)] gives
posterior probability that Pr{h} = 3/5 = 1/{1 + & (3/5)"} = 1/{1 + (2/3)"1.

This formula yields the posteriors in the tablemwe



Sample of (h,t) h—t Median P(# =3/5|h,t) Proper B(f = Z|h, 1)

5.0 5 92 S8
7.9 5 77 88
11.6 5 64 88

19.14 5 60 88
3.0 3 85 7
41 3 80 7
6.3 3 67 7
10.7 3 60 7
91 1 63 60
39 1 60 60
5.4 1 55 60
08 1 54 60



People instead seem to he basing their inference very largely on ﬁ_

Sample of (h;t) % heads Median P(8 =3/5h, 1)

5.0 100% 92
3.0 100% 85
41 80% 80
79 78% 77
6.3 67% 67
91 67% 63
11.6 65% 60
39 60% 60
10.7 59% 60
10,14 58% 60
5.4 55% 55
0.8 53% 54

Matthew's Claim: Only an egghead statistics geek would think that A —1 tells vou more about
the coin’'s bias than hL—I—'# Just becauze h — 1t 12 the correct statistic to usze doezsn’t make 1t

sensible or intuitive. MMerely correct.



Sample of (h,t) Median P(# =3/3) Bayes(3/5)

91 63 60
3.0 85 77
39 60 60
41 80 77
5.0 92 88
5.4 55 60
6.3 67 T
7.9 77 88
08 54 60
10,7 60 77
11,6 64 88

10,14 60 88

Relving so heavily on -& in judging relative likelihoods, it might be (and in fact it 1s) that

people think thev are learning more from h — ¢ In symmetric-coin inference problems than
they are 1in small samples. and think they are learning lezs than they are in large zamples.

More generally, in inference problems, people exhibit:

1. “Sample-Size Neglect”: Their inferences are too szensitive to hi_l_t and too
insensitive to A + £

2. Non-Belief in the Law of Large Numbers—people don't get just how much they
learn from large data sets.

3. Belief in the Law of Small Numbers—people believe theyv are learning more
from small samples than they really are.



Rabin on general modeling strategy:

| believe it is very useful to emphasize the statlgystematic departures from correct
Bayesian information processing, always focusingnenBayesian model as a base-line com-
parison. This is not the only reasonable approadtudying bounded rationality. But |

think it makes a lot of sense because:

1. Bayesian rationality is what our models now assuNote: A mini-literature in psychology
responds to the K&T hypothesis that “In generadsthheuristics are quite useful, but sometimes
they lead to severe and systematic biases” witihghettal “No—while these heuristics may
sometimes lead to severe and systematic biasgengral they are quite useful.” Irrespective of
the merits of having such a debate in psycholdgg,alear given the current status of economics
that economists are more in need of understandm@'t half of the first sentence than the 2nd
half of the second sentence. Economists haventtedemphasis on the ways people are smart;
we have assumed that people are inhumanly smaatrelévant insights for us are clearly
identifying the sever and systematic biases.

2. This approach promotes emphasis on how probabiteasoning is not random or totally
irrational. Central point to understand the heigssand-biases literature: Bounded Ratio-
nality = Randomness, and is a form of human raliynaot inhuman idiocy.

3. Bayesian updating is the unigue normativelytngay to process information.



4. Sticking as closely as possible to the Bayeamroach helps us take advantage of the
existing apparatus in economics for thinking alstatistical reasoning.

5. And it would be nice to follow the approach takkroughout the course and much

of the psychology-and-economics literature: Mod®attures from “classical” models as
contentions about parameter values in general rmaldat embed the classical model as

a special case. Embedding fully rational Bayesijaaating as special cases of generalized
models allows us to do good comparative staticssaedvhere our results are coming from,
and facilitates direct empirical testing.

Camerer on general modeling strategy

The Bayesian approach is so simple and usefulttisahard to find equally simple formal
alternatives consistent with Kahneman and Tvershgisristics. An appealing way to do so is to
use the Bayesian framework but assume that pedpbpatify or misapply it in some way.

For example, Rabin and Schr&JE 1999) define “confirmatory bias” as the tendency to
perceive data as more consistent with a prior thgms than they truly are; their model is
otherwise fully Bayesian.

For example, RabirqJE 2002) models representativeness as the (mistakeet&tion that
samples are drawn without replacement, and shoms $@sh implications of that model (e.qg,
perceiving more skill among managers than trulgtsx



Modeling representativeness (Koszegi following Rabi(QJE 2002))

A person, “Freddy” in the paper, observes a sequehbinary signals of some quality,
“good” or “bad.”

The signals are random, with a constant probalflifate”) of being good, which Freddy has a
correct Bayesian prior about.

Although the signals are really i.i.d., Freddy beéis that they are generated by random draws
without replacement from an “urn” of N signals, wi¢he urn contains signals in proportions
corresponding to the rate.

Other than misunderstanding the statistical progesgrating the outcomes, Freddy is
completely rational: he always makes the corrderances (and uses Bayes' rule) given his
wrong theory of the world.

N — oo implies the person’s inferences approach Bayesiaonality;N — O implies they are
more distorted.

The urn is completely replenished every 2 periddsiathematical trick. (Convenient but less
natural than continuous replenishment as in Rap@mat Budescu, “Randomization in
Individual Choice Behavior,Psychological Review (1997): People maintain window kf
previous trials. Predict next triat 1 will “balance” subsequence bft 1 (i.e., make relative
proportions = probabilities).)



This model immediately (and trivially) yields thg&mbler’s fallacy,” in that Freddy expects the
second draw of a signal to be negatively correlatghl the first.

The model also yields some insight into the hodhfaflacy and other puzzles. Virtually every
sports fan believes that there is a systematiatran in the performance of each player from
day to day, that the performance of a player duaipgurticular period may be predictably
better than expected on the basis of the playeesall record. This was carefully tested, and
rejected, for professional basketball by Gilovighllone, and Tversky (1985ognitive
Psychology). But people still believe it.

The hot hand fallacy at first seems the opposith®gambler’s fallacy: The gambler’s fallacy
IS the belief that the next outcome is likely todierent from previous ones, whereas the hot
hand fallacy is the belief that the outcome isllike be similar to previous ones.

But both the gambler’s fallacy and the hot hanth& can be explained by this way of
modeling representativeness. Intuitively, the gamblfallacy means people do not expect to
see many streaks in a person’s performance. Whegndilh see many streaks over a long
period, the sequence will not feel representathee @mpletely independent random process.
Hence, they will conclude that the person must hreada hot hand. This is the only way they
can “rationally” explain the unexpected streaky/ thave observed.



First imagine that Freddy is playing roulette. H@Wws that the proportion of reds and blacks
over time are equal.

Suppose N = 10, and that red came up twice in aToat N = 10 means that Freddy started
off thinking that there were 5 red and 5 black ®ailthe run. With two red balls gone, Freddy
expects the next draw to be black with probabBity > 1/2. That is, Freddy commits the
gambler’s fallacy. Intuitively, since he expectspancal proportions in small samples to
resemble the true proportions, he expects initidlalances to “correct themselves.”

Now imagine that Freddy is trying to infer the klelvel of a mutual-fund manager called
Helga, where he does not know the probabilitieeldvant outcomes. Freddy knows whether
Helga has beaten the market average when runnmgdreaged fund zero times, once, or
twice each of the last two quarters. He does notkHelga’'s skill level.

There is a probability q that Helga always beagsittarket, a probability g that she never beats
the market, and a probability 1 — 29 that she bismtsnarket with probability 1/2. Freddy has
correct priors about the likelihood that Helgaksled or unskilled.

In reality, a mediocre Helga’s performance is irelegent from quarter to quarter.



Suppose that N = 2. What does Freddy think may é@pple correctly thinks that an
unskilled Helga will fall short of the market baimes and a skilled Helga will beat the
market both times, but he thinks a mediocre Heltdjaoeat the market exactly once and fall
short of the market exactly once. As before, Frexlmiymits the gambler’s fallacy: If he
observes a mediocre Helga performing well, he shstike is due for a bad performance.

What will Freddy infer after observing Helga havimgp good quarters in a row? He thinks
only a skilled Helga can perform this well, so h# infer that Helga is skilled for sure. By
the same logic, if Freddy he observes two bad padaces in a row, he will conclude that
Helga is unskilled for sure. Freddy overinfers Heédgskill from a small sample of extreme
performances—he draws a more extreme conclusionishijastified by his observations.

This overinference is rooted in the same represigatess that is behind the gambler’s
fallacy. Since Freddy believes in the gambler'tafal, he expects the mediocrity of Helga’s
decisions to be quickly reflected in a quarter adl performance. Hence, he thinks that a
couple of good performances indicate high skill.

Freddy’s overinference regarding Helga’s skill ¢@ad him to several mistakes. First, he may
be too eager to invest his money in Helga’'s funthfs performed well recently. He will

then be surprised when Helga'’s two good performaace followed (as is all too likely) by a
bunch of average performances. That is, he und®igsss “reversion to the mean”.

If Helga follows her quarters of good performanathwnediocre ones, Freddy may move his
money pointlessly between investments.



Now consider what conclusion Freddy draws fromia @lamixed performances. He believes
that only a mediocre Helga can have such perforegrand he is in fact correct in this belief.
Hence, Freddy overinfers only from extreme perforoes. Intuitively, the mistake Freddy
makes is to underestimate the probability thatea&tof good or bad performances arises
purely by chance, so that he attributes extrem®peances to skill. There is no similar
mistake he makes with mixed performances.

Freddy’s overinference about Helga’s skill fromh&id sequence of good performances is
exactly like a false belief in the hot hand: He &asily concludes that Helga'’s skill is “hot.”
But this can only happen because Freddy thinlssatpriori possible that Helga is a skilled
manager.



However, the model implies that Freddy will coméo&dieve this even if it is not the case:
Upon observing the world, he will come to beliekattthere is variation in manager skill
when in fact there is none.

Suppose Freddy does not have a good idea abodistheution of skills among mutual-
fund managers, and is trying to learn this fromestisig the performance of mutual funds.

Consider an extreme case: in reality all mutuadforanagers are mediocre, beating the
market each quarter with probability one-half.

Freddy observes two quarters of performance byge laumber of mutual funds. Since in
reality all managers are mediocre and have indepemuerformances, Freddy will observe
that one-quarter of the mutual funds beat the ntawkiee, half beat the market once, and one-
guarter do worse than the market twice. But Frddtbely believes that only skilled mutual-
fund managers can beat the market twice in a rowmgsconcludes that one-quarter of the
mutual-fund managers are skilled. Similarly, heatodes that one-quarter of the mutual-fund
managers are unskilled. That is, he overestimhatesdriation in skill in the population.

Intuitively, since Freddy believes in the gambldabacy, he thinks streaks of good or bad
performance are unlikely. So if he watches sewamalysts for two quarters, because he
underestimates how often average analysts will kamsecutive successful or unsuccessful
years, he interprets what he sees as evidence ekibtence of good and bad analysts.



This sort of analysis can be done with tediouslalgéor less extreme cases (Rabin):

Let good performances be a, and bad & Then:

True Probability Freddy's Predicted Probability
aa ab (or ba) bb aa ab (or ba) bb
-3 & & & s— s— ﬂ
If 6 =1 2 £ 2 1 i 1
If 6 = 1 T T T 0 G g

Claim: Freddy will over-infer likelihood of 8 = % upon chserving aa. Exercize: Calculate his
and a Bavesian's posterior beliefs about Helga following aa.

Civen his priors g, with what chance does Freddy expect to see aa. ab, and bb performances

bv Helga?

Freddy believes the likelihood of aa 15 g E +{1— qu qﬂ = g + %q
Freddy bhelieves the likelihood of ab 1z g3 + Il - Qq + qu 2 — =4
Freddy believes the likelihood of bb 1= ql] + (1 — ?ql- g5 = % + 29

Actual likelihood of aa 15 g= L'b + (1 - Qu;r} =+ qE = fr: +21q
Actual likelihood of ab iz g5z + (1 — 2¢g) ¢ “_, +g5 ==

5

Actual hikelihood of bb 13 91 + r1 — ?ql-r- T a1 = 14:1?



From Rabin QJE 2002)

IV. OVERINFERENCE

The most interesting implications of the law of small num-
bers come when Freddy is uncertain about the true rate, and
makes inferences about the rate from the signals he observes.
Suppose, for instance, that an observer believes that there is an
equal chance a fund manager can be any of three types, bad,
average, or good, who outperforms other mutual funds 1/4, 1/2, or
3/4 of the time, respectively. What does he infer from two suc-
cessful years in a row by a particular fund? A Bayesian thinks
such a sequence occurs with probability 1/4 - 1/4 = 1/16 for bad
funds, 2/4 - 2/4 = 4/16 for average funds, and 3/4 - 3/4 = 9/16 for
good funds. But an N = 4-Freddy believes that the probabilities
are 1/4 - 0/3 = 0/12 if the fund is bad, 2/4 - 1/3 = 2/12 if the fund
is average, and 3/4 - 2/3 = 6/12 if the fund is good. For each rate,
Freddy assigns a lower probability to a streak of two a’s than a
Bayesian assigns—because he believes that no matter the rate,
drawing the first @ means there are fewer a’s left for the second
draw. But more importantly, Freddy’s beliefs are too skewed
toward believing that the fund is good, since making one less a
available for the second draw has a proportionately greater im-
pact when there are fewer a’s to begin with. From his priors,
Freddy forms probabilistic beliefs about the rate given an ob-
served sequence of signals using a sort of warped Bayes’ Law—
applying Bayes’ Law with his mistaken beliefs about how likely
each sequence is given an underlying rate. While a Bayesian
believes the probability that the analyst is good is 18/28, Freddy
believes that the probability is 21/28 > 18/28.



By contrast, if Freddy observed a large numbeigfas from each of several different
sources, then he is too likely to believe thatrtte is less extreme than it is.

This is because he struggles to explain why h@sgiwving so many streaks of rare signals,
which he thinks are very unlikely.

To explain such streaks, he may come to believeliearue rate is close to 50/50, even if this
does not accord with the overall frequency of tlgaals, assuming that there is underlying
variation even when there is none.

Such a false belief corresponds to the hot hatalcfal

See Rabin and Vayanos, “The Gambler's and Hot-Hafdcies in a Dynamic-Inference Model”.



Further Issues (not covered in class)

Overconfidence

98% confidence interval only captures 60% of tistrdiution.
100% is actually 80% and 0% is actually 20%

Optimism/Wishful Thinking

Unrealistic view of personal abilities/prospects

90% of drivers claim above average skill

99% of freshman claim superior intelligence

Confirmatory Bias

People selectively either ignore or misread furflaenbiguous) information as supporting initial
hypotheses. That is, once a person has formedragdiiypothesis about what is true, she tends to
selectively ignore contrary evidence and carefadlgsider supporting evidence.

Anchoring

People often try to answer a question by starttrgpme first-pass guess based on memory or the

environment, and then adjusting that guess urgy tire satisfied with the answer. Even after the
adjustment, people’s judgment seems to be coloyatdir original guess or anchor.



Avalilability Biases

People often assess the frequency of a class @rdability of an event by the ease withich
instances or occurrences can be brought to mindanBawver questions such as “What percentage
of commercial flights crash per year?”, “What i thsk of heart attack among middle-aged
men?”; or “Are there more suicides or more homiside the United States each year?”, most
people (who do not know the answer) try to recaditances of plane crashes, heart attacks,
suicides, or murders they have heard about frommantances or in the news. The easier they can
recall instances of the event, the more likely thexceive it to be.

Curse of Knowledge

The hindsight bias is closely related to the cafdanowledge. People cannot abandon their
own perspective, even when they know others agedifferent situation, and they are highly
motivated to communicate well.

Incomplete Debiasing

Suppose a person is told that A is true, whereafiddo some conclusion X. Then, she is told

that A is actually not true—it was a mistake—and bilieves this. Despite this, she will
believe in X more than if she never heard A.



