Economics 142: Behavioral Economics Vincent Crawford

Spring 2008 Decision Survey

1. Would you choose to lose \$500 for sure or to lose \$1000 with probability 0.5? Please check one:
lose \$500 for sure lose \$1000 with probability 0.5
2. Would you choose to receive \$3,000 for sure or to receive \$4,000 with probability 0.8? Please check one:
receive \$3000 for sure receive \$4000 with probability 0.8
3. Suppose that one out of a hundred people in the population have HIV. There is a test for HIV that is 99% accurate. This means that if a person has HIV, the test returns a positive result with 99% probability; and if a person does not have HIV, it returns a negative result with 99% probability. If a person's HIV test comes back positive (and you know nothing else about her/him), what is the probability that s/he has HIV? Please fill in a percentage amount:
% probability that s/he has HIV
4. Jack's been drawn from a population which is 30% engineers and 70% lawyers. Jack wears a pocket protector. Use your own estimate of the respective probabilities that engineers and lawyers wear pocket protectors to estimate the probability that Jack is an engineer. Please fill in a percentage amount:
% probability that Jack is an engineer
5. Suppose I could give you either \$100 in cash right now or \$x in cash in two weeks. What is the x for which you would be indifferent between the two options? Please fill in a dollar amount:
\$ x for which you would be indifferent

Economics 142: Behavioral Economics Vincent Crawford

Spring 2008 Decision Survey

1. Would you choose to receive \$500 for sure or to receive \$1000 with probability 0.5? Please check one:
receive \$500 for sure receive \$1000 with probability 0.5
2. Would you choose to receive \$3,000 with probability 0.25 or \$4,000 with probability 0.2? Please check one: receive \$3000 with probability 0.25 receive \$4000 with probability 0.2
3. Suppose that one out of a hundred people in the population have HIV. There is a test for HIV that is 99% accurate. This means that if a person has HIV, the test returns a positive result with 99% probability; and if a person does not have HIV, it returns a negative result with 99% probability. If a person's HIV test comes back positive (and you know nothing else about her/him), what is the probability that s/he has HIV? Please fill in a percentage amount:
% probability that s/he has HIV
4. Jack's been drawn from a population which is 30% lawyers and 70% engineers. Jack wears a pocket protector. Use your own estimate of the respective probabilities that lawyers and engineers wear pocket protectors to estimate the probability that Jack is an engineer. Please fill in a percentage amount:
% probability that Jack is an engineer
5. Suppose I could give you either \$100 in cash in 52 weeks or \$x in cash in 54 weeks. What is the x for which you would be indifferent between the two options? Please fill in a dollar amount:
\$ x for which you would be indifferent