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Example: Pure-strategy security levels (floors on left, floor and ceiling on right) 
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 Both Players’ Payoffs Shown   Only Row’s Payoffs Shown 
 
Because Row’s and Column’s pure-strategy security levels are consistent (*s mark 
maximal floors 1 and -1 on left; maximal floor 1 and minimal ceiling 1 on right), 
there is no role for mixed strategies in this game.     
 
Example: Mixed-strategy security levels (floors on left, floor and ceiling on right) 
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 Both Players’ Payoffs Shown   Only Row’s Payoffs Shown 
 
Because Row’s and Column’s pure-strategy security levels are inconsistent 
(maximal floors -1 for Row + -1 for Column on left add to < 0; maximal floor for 
Row -1 < minimal ceiling for Column on right), mixed strategies play a role. 
 
On the left, Row’s security level for Pr{T} = Pr{M} = ½ is an expected payoff of 
0; and Column’s for Pr{L} = Pr{C} = ½ is an expected payoff of 0. Equivalently 
on the right, Row’s maximal floor is 0 and Column’s minimal ceiling is 0. Thus 
Row’s and Column’s mixed-strategy security levels are consistent. 



Using linear programming to find security-level maximizing strategies 
 
 L (-1*) C (-2) R (-5)   L (1*) C (2) R (5) 

T (1*) 
-1 

1 
-2 

2 
-4 

4 
 T (1*) 1 2 4 

M (0) 
0 

0 
0 

0 
-5 

5 
 M (0) 0 0 5 

B (0) 
0 

0 
-1 

1 
0 

0 
 B (0) 0 1 0 

 Both Players’ Payoffs Shown   Only Row’s Payoffs Shown 
 
In this game one can easily find security-level maximizing strategies by iterated 
elimination of dominated strategies, which never eliminates all security-level 
maximizing strategies: Iterated elimination first eliminates R for Column and B for 
Row, then M for Row and C for Column, leaving only T for Row and L for 
Column, which we have already seen are the security-level maximizing strategies. 
 
But often it’s not so easy, as in the game with mixed-strategy security-level 
maximizing strategies, and we need a systematic method: linear programming.  
 



Consider this game again: 
 
 L (-1) C (-1) R (-2)   L (1) C (1) R (2) 
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Row’s linear programming problem would be: 
 
Choose x1, x2, x3, and v to maximize v    s.t.   v ≤ 1x1 – 1x2 – 2x3 (y1) 
              v ≤ – 1x1 + 1x2 – 2x3 (y2)        
              v ≤ 2x1 + 2x2 – 2x3 (y3) 

x1 + x2 + x3 = 1 (w) 
x1, x2 , x3 ≥ 0. 

 
(Ignore the dual shadow prices y1, y2, y3, and w for now. A more standard way to 
write the first constraint would be v – 1x1 + 1x2 + 2x3 ≤ 0.)  
 
The constraints define v as a floor under Row’s expected payoff, saying that v is 
no greater than Row’s expected payoff if Column plays L, C, or R respectively. 
 
(What if Column plays a mixed strategy? v is still a floor, because Row’s expected 
payoff is a weighted average of his payoffs when Column plays pure strategies.) 
 
Thus the problem finds the x1*, x2*, x3*  that put the highest possible floor, v*, 
under Row’s payoff: Row’s security-level maximizing strategy.   



If we note that B can never be played with positive probability in a security-level-
maximizing strategy for Row (why?), we can solve Row’s problem graphically. 
 
Setting x3 = 0 and x2 = 1– x1, the problem  
 
Choose x1, x2, x3, and v to maximize v    s.t.   v ≤ 1x1 – 1x2 – 2x3  
              v ≤ –1x1 + 1x2 – 2x3        
              v ≤ 2x1 + 2x2 –2x3 

x1 + x2 + x3 = 1 
x1, x2 , x3 ≥ 0. 

becomes  
 
Choose x1, x2, and v to maximize v s.t. v ≤ 1x1 – 1x2 = 2x1 – 1 
        v ≤ – 1x1 + 1x2 = 1– 2x1         
             v ≤ 2x1 + 2x2 = 2 

x1 + x2 + x3 = 1 
x1, x2 , x3 ≥ 0. 

 
With x1 on the horizontal axis and v on the vertical axis we get the graph:: 

 

Not drawn to scale. 

The top horizontal line is at height 2 and the bottom horizontal line is at height 0; 
the other lines intersect the v axis at 1 and -1. The constraint v ≤ 2 is slack at the 
solution. The solution is at the intersection of v = 2x1 – 1 and v = 1– 2x1, so x1* = 
x2* = ½, x3* = 0, and v* = 0. 
 
The optimal mixed strategy yields a security level higher than any pure strategy’s.  



Linear Programming Duality and Zero-Sum Two-Person Games   
 
Row’s security-level-maximizing problem with constraints put into standard form:    
 
Choose x1, x2, x3, and v to maximize   v    s.t. v – 1x1 + 1x2 + 2x3 ≤ 0 (y1) 
             v + 1x1 – 1x2 + 2x3 ≤ 0 (y2)        
        v – 2x1 – 2x2 + 2x3 ≤ 0 (y3) 

x1 + x2 + x3 = 1 (w) 
x1, x2 , x3 ≥ 0. 

 
The linear programming dual of Row’s security-level-maximizing problem: 
 
Choose y1, y2, y3, and w to minimize w  s.t.  w – 1y1 + 1y2 – 2y3 ≥ 0 (x1) 

w + 1y1 – 1y2 – 2y3 ≥ 0 (x2)  
        w + 2y1 + 2y2 + 2y3 ≥ 0 (x3)   

y1 + y2 + y3 = 1 (v) 
y1, y2, y3 ≥ 0. 

 
In constructing the dual, and checking the relationship between the primal and the 
dual, note that v and w are variables just like the xi and yi; that all constraint 
constants are 0 but those on the equality constraints x1 + x2 + x3 = 1 and y1 + y2 + y3 

= 1, whose shadow prices are v and w. This is why v and w are unrestricted but the 
xi and yi must be ≥ 0, and why the xi and yi don’t appear in the objective functions. 
 
Finally, note that the first three dual constraints, whose coefficients are the 
transposes of those of the first three primal constraints, define w as a ceiling over 
Row’s expected payoff (as we did in the right-hand examples above), saying that w 
is no less than Row’s expected payoff if Row plays T, M, or B respectively. 
 
Because minimizing the height of the ceiling is equivalent to maximizing the 
height of the floor –w under Column’s expected payoff, the dual determines 
Column’s security-level maximizing strategy. 
 
Duality and complementary slackness yields useful conclusions about the optimal 
strategies: All pure strategies played with strictly positive probability must yield a 
player exactly his security level. And slack constraints in the primal (dual) must be 
associated with strategies played with zero probability in the dual (primal).     



Morra 

 12 13 23 24 
12 0 2 -3 0 
13 -2 0 0 3 
23 3 0 0 -4 
24 0 -3 4 0 

 
Recall the rules of Morra: Players simultaneously hold up either one or two fingers 
(i) and call out a number (j); call this “ij”. If your number equals the total of your 
and the other’s fingers, you win that amount from the other player. (Both can win.) 
 
If Row’s mixed-strategy probabilities of playing 12, 13, 23, 24, are x1, x2, x3, x4 
and Column’s mixed-strategy probabilities of playing 12, 13, 23, 24 are y1, y2, y3, 
y4, then any (x1, x2, x3, x4) = (0, ρ, 1– ρ, 0) where 4/7 ≤ ρ ≤ 3/5 (and only those) is 
security-level maximizing for Row; and any (y1, y2, y3, y4) = (0, σ, 1– σ, 0) where 
4/7 ≤ σ ≤ 3/5 (and only those) is security-level maximizing for Column. 
 
You can verify directly that those strategies yield Row and Column security levels 
of zero and no other strategy yields a security level as high as zero. (In a symmetric 
zero-sum game, the players can’t have positive or negative security levels.) 
 
For example, suppose Row plays (x1, x2, x3, x4) = (0, ρ, 1– ρ, 0) with 4/7 ≤ ρ ≤ 3/5. 
Then if Column plays 12 Row’s expected payoff is -2ρ + 3(1– ρ) ≥ 0 (as long as ρ 
≤ 3/5); if Column plays 13 or 23 Row’s expected payoff is 0; and if Column plays 
24 Row’s expected payoff is 3ρ – 4(1– ρ) ≥ 0 (as long as 4/7 ≤ ρ). 
 
If both players play security-level-maximizing strategies, the game is boring 
because they always tie. But unlike in matching pennies, the security-level-
maximizing strategy yields a chance of gain against an opponent’s 12 or 24.  
 
(Note the typo on this in Prof. Sobel’s notes IX. Two-Person Zero-Sum Game 
Theory, p. 12: It is not correct that “Game-theoretic analysis recommends that you 
mix between your first three strategies (there are mixed strategies that guarantee an 
expected payoff of zero that use 12 with positive probability).” The only optimal 
strategies are those that mix in the stated proportions between 13 and 23.)  
 
It’s a little surprising (though not truly surprising) that 12 and 24 must be played 
with zero probability even though they are not dominated by 23 or 24. They are, 
however, dominated by any optimal mixture of 23 and 24.   



 12 13 23 24 
12 0 2 -3 0 
13 -2 0 0 3 
23 3 0 0 -4 
24 0 -3 4 0 

 
You can also verify the security-level-maximizing strategies from the primal and 
dual security-level-maximizing linear programs: 
Row’s problem is:  
Choose x1, x2, x3, x4, and v to maximize   v    s.t.  v ≤ –2x2 + 3x3 (y1) 
              v ≤ 2x1  –3x4 (y2)         
              v ≤ –3x1 + 4x4 (y3) 

v ≤ 3x2 – 4x3 (y4) 
x1 + x2 + x3 + x4 = 1 (w) 
x1, x2 , x3, x4 ≥ 0. 

Column’s problem is:  
Choose y1, y2, y3, y4, and w to minimize w  s.t.  w ≥ 2y2  –3y3 (x1) 
              w ≥ –2y1 + 3y4 (x2)         
              w ≥ 3y1 – 4y4 (x3) 

w ≥ –3y2 +4y3 (x4) 
y1 + y2 + y3 + y4 = 1 (v) 
y1, y2, y3, y4≥ 0. 

 
You can solve one or both of these using Solver. (They’re way too big to graph.) 
  
It’s not hard to check that (x1, x2, x3, x4) = (0, ρ, 1– ρ, 0) where 4/7 ≤ ρ ≤ 3/5 and 
(y1, y2, y3, y4) = (0, σ, 1– σ, 0) where 4/7 ≤ σ ≤ 3/5 are feasible for the primal and 
the dual, and yield the same objective function value, 0. 
 
Or you can check that they are feasible and satisfy complementary slackness. 
 
Thus either way, by the Duality Theorem, both are optimal. 
 
Unlike for Matching Pennies, it’s hard to imagine finding the optimal strategies for 
Morra by intuition or luck. (Even if you know it is wrong to play 12 or 24 with 
positive probability, ρ (or σ) must be between 0.587 and 0.6, a very narrow range.)  
 
Thus knowing the solution (and being immune to boredom) may allow you to 
make some money. 


