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1 Introduction

The formation of the European Monetary Union has sparked a resurgence of interest in regional

business cycles, both in Europe and in the United States, where longer time series are available. A

number of these recent studies have characterized the U.S. national economy as an agglomeration

of distinct but interrelated regional economies. While some idiosyncrasies exist, regional business

cycles in the United States, for the most part, bear a reasonable resemblance to the national cycle

identified by the National Bureau of Economic Research (NBER) using aggregate data. Disparities

in regional business cycles have often been attributed either to idiosyncratic shocks or to differences

in characteristics such as the industrial composition of the regions. Conversely, commonality can

be attributed to responses to common aggregate shocks for which the state responses vary but the

timing is identical.1

Characterizing regional business cycles using a panel data set with large cross-section and time-

series dimensions raises two separate questions. The first is how to model the comovements that are

common across geographic divisions. In Owyang, Piger, and Wall (2005) and Owyang, Piger, Wall,

and Wheeler (2008), the unit of analysis is taken to be individual states and cities, respectively.

Regional similarities were noted but not modeled explicitly. One alternative for characterizing

common elements across geographic divisions is to rely on factor analysis, as in Forni and Reichlin

(2001) and Del Negro (2002). Another approach is to use exogenously defined regions such as

those adopted by the Bureau of Economic Analysis (BEA) as either the basic unit of analysis (e.g.,

Kouparitsas, 1999) or an additional observable restriction on the state-level factor structure (Del

Negro, 2002). A few studies define regions endogenously. Crone (2005) used k−means cluster

analysis of state business cycle movements to define regions. While his regional definitions are

similar to those used by the BEA, Crone found some discrepancies (in particular, Arizona, which

may be taken as a region unto itself). Partridge and Rickman (2005) used cyclical indices to

uncover common currency areas in the United States. Similarly, van Dijk et al. (2007) constructed

clusters for regional housing markets in the Netherlands.

A second question concerns the manner in which the business cycle itself is defined. What

exactly are we claiming to have measured when we compare the timing of a recession in one state
1Monetary shocks, for example, are aggregate shocks that have common timing but varying effect [see Carlino and

DeFina (1998)].
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with that observed in another? In a standard factor model, the cyclical component is viewed as a

continuous-valued random variable, defined in terms of its ability to capture certain comovements

across states. Kouparitsas (1999) and Carlino and DeFina (2004) used band-pass filters to extract

the business cycle frequency from disaggregate data. Carlino and Sill (2001) and Partridge and

Rickman (2005) relied on trend-cycle decompositions.

Hamilton (2005) argued that the defining characteristic of the business cycle as understood, for

example, by Burns and Mitchell (1946) is a transition between distinct, discrete phases of expansion

and contraction. Owyang, Piger, and Wall (2005) and Owyang, Piger, Wall, and Wheeler (2008)

adopted this perspective in their application of the Markov-switching model of Hamilton (1989)

to data for individual states and cities, respectively. The contribution of the present paper is

to extend that effort to characterize the interactions across states in these shifts. Our paper

could alternatively be viewed as an extension of factor or cluster analysis to this kind of nonlinear

framework.

We account for the correlation across states by modeling both national and regional recessions.

In our setup, following Frühwirth-Schnatter and Kaufmann (2008), we allow the data to define

regional groupings (which we designate as “clusters”) on the basis of comovement in state employ-

ment growth rates and other observable, fixed state characteristics. In particular, we model the

probability of a state’s inclusion in any region as a logistic variable, in which state-level character-

istics affect the prior probability of state membership in a region-cluster and observed employment

growth comovements inform the posterior inference about those probabilities.

The model is estimated using Bayesian methods, and we report five main findings. First, most

state-level business cycle experiences are similar to those of the nation. Second, most idiosyncratic

recession experiences amount to differentials in timing around the national recessions. For exam-

ple, some states enter some recessions before the rest of the nation. Third, a cluster of states,

characterized by an important role for oil production in their economies, does enter and exit reces-

sions independently from the nation. Fourth, the regional clusters we find are not exclusive, i.e., a

state can belong to more than one region. However, the overlapping of states in multiple regions is

infrequent. Finally, while industrial composition matters for cluster determination, other factors

such as the share of employment coming from small firms may also be important.

The remainder of this paper is organized as follows. Section 2 presents our characterization
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of regional business cycles with particular focus on endogenous region determination. Section 3

details the estimation technique. Section 4 presents the empirical results. Section 5 concludes.

2 Characterizing regional business cycles.

Let ytn denote the employment growth rate for state n observed at date t. We group observations

for all states at date t in an (N × 1) vector yt = (yt1, ..., ytN )′, where N denotes the number of

states. Let st be an (N × 1) vector of date t recession indicators (so stn = 1 when state n is in

recession and stn = 0 when state n is in expansion). Suppose that

yt = µ0 + µ1 � st + εt, (1)

where the nth element of the (N × 1) vector µ0 + µ1 is the average employment growth in state

n during recession, the nth element of the (N × 1) vector µ0 is the average employment growth in

state n during expansion, and � represents the Hadamard product. We assume that εt ∼ i.i.d.

N(0,Ω), with εt independent of sτ for all dates and that st follows a Markov chain.

Equation (1) postulates that recessions are the sole source of dynamics in state employment

growth. There is no conceptual problem with adding lagged values of yt−j or st−j to this equation,

though that would greatly increase the number of parameters and regimes for which one needs to

draw an inference. We regard the parsimonious formulation (1) as more robust than more richly

parameterized models for purposes of characterizing the broad features of business cycles across

states. We also adopt the simplifying assumption that Ω is diagonal:

Ω =



σ2
1 0 · · · 0

0 σ2
2 · · · 0

...
... · · ·

...

0 0 · · · σ2
N


.

This reduces the number of variance parameters from N(N + 1)/2 down to N , and, unfortunately,

is necessary for the particular algorithms we employ to be valid. Our model thus assumes that

coincident recessions, or the tendency of a recession in one state to lead to a recession in another,
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are the only reason that employment growth would be correlated across states. Again, this is

a stronger formulation than one might like, though we think nevertheless an interesting one for

getting a broad summary of some of the ways that the business cycle may be propagated across

regions.

Despite these assumptions, the model (1) is numerically intractable without further simplifica-

tion. If state 1 can be in recession while 2 and 3 are not, or 1 and 2 in recession while 3 is not,

there are η = 2N different possibilities, or 2.8 × 1014 different configurations in the case of the 48

contiguous states. Implementing the algorithm for inference and likelihood evaluation in Hamilton

(1994, p. 692) would require calculation of an (η × 1) vector ξt and an (η × η) matrix P, which is

not remotely feasible. Even if it somehow could be implemented, such a formulation is trying to

infer much more information from a (T ×N) data set than can be reasonably justified.2

Our approach, as in Frühwirth-Schnatter and Kaufmann (2008), is to assume that recession

dynamics can be characterized in terms of a small number K << 2N of different clusters and by an

aggregate indicator zt ∈ {1, 2, ...,K} signifying which cluster is in recession at date t. We associate

with cluster 1 an (N × 1) vector h1 = (h11, ..., hN1)
′ whose nth element is unity when state n is

associated with cluster 1 and 0 if state n is not associated with the cluster. When zt = 1, all the

states associated with cluster 1 would be in recession. In general,

yt|zt = k ∼ N(mk,Ω),

where

mk = µ0 + µ1 � hk.

Conditional on knowing the values of h1, ...,hK , this is a standard Markov-switching framework

for which inference methods are well known. The new question is how to infer the configurations

of h1, ...,hK from the data. We impose two of these configurations a priori, stipulating that hK is

a column of all zeros (so that every state is in expansion when zt = K), and hK−1 is a column of

all ones (every state is in recession when zt = K − 1). We will refer to clusters other than those

characterized by hK−1 and hK as “idiosyncratic” clusters and let κ = K − 2 denote the number of
2Others have posited alternative methods for estimating large panel Markov-switching models. See, for example,

Sims, Waggoner, and Zha (2008) and Kaufmann (2010).

4



idiosyncratic clusters. Thus, when zt = 1, 2, ..., κ, some states are in recession and others are not.

The values of h1, ...,hκ are unobserved variables that influence the probability distribution of the

observed data {yt}T
t=1.

We postulate that there is a (Pk × 1) vector xnk that influences whether state n experiences a

recession when zt = k according to

p(hnk) =

 1/
[
1 + exp

(
x
′
nkβk

)]
if hnk = 0

exp
(
x
′
nkβk

)
/

[
1 + exp

(
x
′
nkβk

)]
if hnk = 1

(2)

for n = 1, ..., N ; k = 1, ..., κ. Note that state n could be affiliated with more than one idiosyncratic

cluster.3 Alternatively, state n would participate only in national recessions if hn1 = · · · = hnκ = 0.

We think of βk as a population parameter – prior to the generation of any data, nature generated

a value of hnk according to (2). We will then draw a Bayesian posterior inference about the

population parameter βk. Following Holmes and Held (2006), it is convenient for purposes of

the estimation algorithm to represent this generation of hnk given βk as the outcome of another

unobserved pair of latent variables, denoted ξnk and ψnk. The ability to do so comes from the

following observation by Andrews and Mallows (1974). Let ψnk have the limiting distribution of

the Kolmogorov-Smirnov test statistic, whose density Devroye (1986, p. 161) writes as

p (ψnk) = 8
∞∑

j=1

(−1)j+1 j2ψnk exp
(
−2j2ψ2

nk

)
. (3)

Andrews and Mallows showed that if ψnk ∼ KS and enk ∼ N (0, 1), then ξnk = x
′
nkβk + 2ψnkenk

has a logistic distribution with mean x
′
nkβk and unit scale parameter, for which the cdf is

Pr (ξnk ≤ z) =
1

1 + exp
(
x′

nkβk − z
) .

Thus, as in Holmes and Held (2006), we have that

Pr (ξnk > 0) =
exp

(
x
′
nkβk

)
1 + exp

(
x′

nkβk

) .
3This approach stands in contrast with the typical notion of a “region”. Government agencies (BEA, Bureau of

Labor Statistics, Census, etc.) define their regions such that any state can be a member of only one region. Empirical
studies (e.g., Crone, 2005) make a similar exclusivity restriction.
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In other words, if we thought of nature as having generated ξnk from a N
(
x
′
nkβk, λnk

)
distribution

where λnk = 4ψ2
nk for ψnk ∼ KS, and then selected hnk to be unity if ξnk > 0, that is equivalent

to claiming that the value of hnk was generated according to the probability specified in (2).

3 Bayesian posterior inference.

The task of data analysis is to draw a Bayesian posterior inference about the values of both

population parameters and the unobserved latent variables. We divide these unknown objects

into several categories. The set θ = {µ0,µ1,Ω} characterizes the growth rates for each state in

recession and expansion and the standard deviation σn of employment growth rates for state n

around those means. The (K ×K) matrix P contains the transition probabilities for regimes,

with row i, column j element

pji = p (zt = j|zt−1 = i) ,

where as in Hamilton (1994, p. 679) each column of P sums to unity.

There are also two groups of unobserved latent variables. The (T × 1) vector z = (z1, ..., zT )′

summarizes which clusters are in recession at each date, while h = {h1, ...,hκ} summarizes the

cluster affiliation of each state where hk = (h1k, ..., hNk)
′ denotes the (N × 1) vector characterizing

which states participate in cluster k. There are also three other sets of variables and parameters

associated with that realization of h. Let ξk = (ξ1k, ..., ξNk)
′ and λk = (λ1k, ..., λNk)

′ denote the

associated auxiliary variables [see Tanner and Wong (1987)] that are viewed as having determined

hk according to:

hnk =

 1 if ξnk > 0

0 otherwise
, (4)

ξnk|βk, λnk ∼ N
(
x
′
nkβk, λnk

)
, (5)

λnk = 4/ψ2
nk,

ψnk ∼ KS.

Collect all the latent variables associated with the cluster affiliations in a set H = {h, ξ, λ}, where

ξ = {ξ1, ..., ξκ} and λ = {λ1, ...,λκ}, while β = {β1, ...,βκ} denotes the set of all the logistic
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coefficient vectors.

3.1 Priors.

Recall that a positive scalar x is said to have a Γ (α, β) distribution if its density is

p(x) =

 [βα/Γ (α)]xα−1e−βx for x > 0

0 otherwise
. (6)

We adopt a Γ (ν/2, δ/2) prior for σ−2
n :

p
(
σ−2

n

)
∝ σ−ν+2

n exp
(
−δσ−2

n /2
)
. (7)

We use a N(m, σ2M) prior for µn = (µn0, µn1)′:

p (µn|σn) ∝
∣∣σ2

nM
∣∣−1/2 exp

{
− (µn −m)′

[
σ2

nM
]−1 (µn −m) /2

}
. (8)

With independent priors across states, we then have

p (θ) =
N∏

n=1

p (µn|σn) p
(
σ−2

n

)
.

We model transition probabilities using a Dirichlet prior. Recall that for w =(w1, ..., wm)′ with

wi ∈ [0, 1] and
∑m

i=1wi = 1, we say that w has a Dirichlet distribution with parameter vector α,

denoted w ∼ D (α), if the joint density of {w1, ..., wm−1} is given by

p (w1, ..., wm−1) =
Γ (α1 + · · ·+ αm)
Γ (α1) · · ·Γ (αm)

wα1−1
1 · · ·wαm−1

m .

We adopt the diffuse Dirichlet prior (D (0)) for each column of P:

p (P) ∝ p−1
11 · · · p

−1
KK .
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Our prior distribution for βk is characterized by independent Normal distributions,

βk ∼ N (bk,Bk) for k = 1, ..., κ, (9)

with p (β) the product of (9) over k = 1, ..., κ. Then,

p (H,β) = p (H|β) p (β) ,

where p (H|β) is the product of (3) through (5) over k = 1, ..., κ and n = 1, ..., N .

Numerical values for the prior parameters are summarized in Table 1. Our prior expectation

is that the average employment growth rate in an expansion (reported at an annual rate) would be

+1%, and likely between -1% and +3%, while average employment growth in a recession would be

between -3% and +1%. The prior mean for βkj implies that variable xnj has no effect on whether

state n is included in cluster k, and the prior distribution regards the variable as equally likely to

increase or decrease the probability of state n’s inclusion in the cluster. The explanatory variables

xn are normalized to have unit mean, so that if the first element of βk is unity (a high value for

its prior range) and others are at zero, a state for which xn is at the average value for all states

would be included in cluster k with probability e/(1 + e) = 0.73; a low value (−1) would imply an

unconditional probability of e−1/(1 + e−1) = 0.27. Diffuse priors were used for σ−2
n and P.

3.2 Joint distribution.

Let Y denote the (T ×N) matrix consisting of the observed growth rates for all states at all dates,

where T is the length of the time series. The joint density-distribution for data, parameters, and

latent variables for the logistic clustering formulation is given by

p (Y, θ,P, z,H, β) = p (Y|θ,P, z,H, β) p (z|θ,P,H, β) p (θ|P,H, β) p (P|H,β) p (H,β)

= p (Y|θ, z, h) p (z|P) p (θ) p (P) p (H,β) . (10)

Note that ξ and λ affect the likelihood only through the value of h and are only relevant as auxiliary

parameters to facilitate generation of posterior values of β. Specifically, one can integrate (10)
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over all possible values of ξ and λ to obtain

p (Y, θ,P, z, h, β) =
∫
p (Y|θ, z, h) p (z|P) p (θ) p (P) p (H,β) dξ dλ

= p (Y|θ, z, h) p (z|P) p (θ) p (P)
∫
p (H,β) dξ dλ

= p (Y|θ, z, h) p (z|P) p (θ) p (P) p (h|β) p (β) , (11)

where p (h|β) is the product of (2) over k = 1, ..., κ and n = 1, ..., N .

The conditional likelihood p (Y|θ, z, h) can be written as follows. Collect the state n observa-

tions for all dates in a (T × 1) vector Yn = (y1n, ..., yTn)′ and let θn =
(
µn0, µn1, σ

−2
n

)′. Then,

p (Y|θ, z, h) =
N∏

n=1

p (Yn|θn, z, h) (12)

p (Yn|θn, z, h) =
T∏

t=1

p (ytn|θn, zt, h)

p (ytn|θn, zt, h) ∝ σ−1
n exp

−
[
ytn − µ

′
nw (zt, h)

]2

2σ2
n


w (zt, h) = (1, hn,zt)

′ .

The unconditional probabilities for z are given by

p (z|P) = p (z1)
T∏

t=2

pzt−1,zt

for pzt−1,zt the row zt, column zt−1 element of P. The t = 1 aggregate regime is set to expansion

a priori:

p(z1) =

 1 for z1 = K

0 otherwise
.

The algorithm is initialized with empty clusters and aggregate recessions (zt = K−1) set to match

the NBER recession dates. Regimes for all other time periods are randomized.4

4Results randomizing the regimes for all time periods were similar but converged more slowly.
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3.3 Drawing Ω given Y,µ,P, z, H, β.

Our general Bayesian inference is via the Gibbs sampler [see Gelfand and Smith (1990); Casella

and George (1992); Carter and Kohn (1994)], in which we will generate a draw for one block of

parameters or latent variables conditional on the others. This subsection discusses generation of

Ω conditional on the data Y and on the values for µ,P, z, H, and β that were, in turn, generated

by the previous step of the iteration. In the next subsection, we will discuss how to draw µ given

Y,Ω,P, z,H, β. Both distributions can be derived from

p (θ|Y,P, z,H, β) =
p (θ,Y,P, z,H, β)∫
p (θ,Y,P, z,H, β) dθ

, (13)

where the numerator is given by (10) and
∫

[.] dθ denotes the definite integral over all the pos-

sible values for θ. But multiplicative terms not involving θ cancel from the numerator and the

denominator of (13), so that

p (θ|Y,P, z,H, β) ∝ p (Y|θ, z, h) p (θ)

=
N∏

n=1

p (Yn|θn, z, h) p (θn) .

Hence, the θn given Y,P, z,H, β are independent across n with

p (θn|Y,P, z,H, β) ∝ p (Yn|θn, z, h) p (θn)

∝ p (θn)σ−T
n exp

[
−

T∑
t=1

[ytn − µ
′
nw (zt, h)]2/

(
2σ2

n

)]
. (14)

Substituting (7) into (14) and dividing by the integral over µn, we have

p
(
σ−2

n |Y,µ,P, z,H
)
∝ σ−T−ν+2

n exp
[
−

(
δ + δ̂

)
σ−2

n /2
]

for δ̂ =
∑T

t=1

[
ytn − µ

′
nw (zt, h)

]2
. Recalling (6), we thus generate σ−2

n from a Γ
(
(ν + T ) /2,

(
δ + δ̂

)
/2

)
distribution, a standard result as in Kim and Nelson (1999, p. 181).
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3.4 Drawing µ given Y,Ω,P, z, H, β.

Using (8) in (14) and this time dividing by the integral over σn, we again see, as in Kim and Nelson

(1999, p. 181), that

µn|Y,Ω,P, z,H, β ∼ N
(
m∗

n, σ
2
nM

∗
n

)
(15)

for

M∗
n =

(
M−1 + Cn

)−1

m∗
n = M∗

n

(
M−1m + cn

)
Cn =

[
T∑

t=1

w (zt, h)w (zt, h)
′

]

cn =

[
T∑

t=1

w (zt, h) ytn

]
.

3.5 Drawing P given Y,θ, z, H, β.

Conditional on H and z, this is again a standard inference problem for a K-state Markov switching

process, as in Chib (1996, p. 84). From (10),

p (P|Y, θ, z,H) ∝ p (z|P) p (P) ,

column i of which will be recognized as D(α∗
i ) distribution, where the jth element of the vector

α∗
i is given by

α∗ij =
∑T

t=2 δ (zt−1 = i, zt = j)∑T
t=2 δ (zt−1 = i)

,

which is just the fraction of times that regime i is observed to be followed by regime j among the

sequence {z1, ..., zT }.

3.6 Drawing z given Y,θ,P,H, β.

Here,

p (z|Y, θ,P,H, β) ∝ p (Y|θ, z, h) p (z|P) .

Again as in Chib (1996, p. 83),
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p (z|Y, θ,P,H, β) = p (zT |Y, θ,P, h)
T−1∏
t=1

p (zt|zt+1, ..., zT ,Y,θ,P, h) .

But zt+1 conveys all the information about zt embodied by future z or y. Thus if Yt = {yτn : τ ≤ t;n = 1, ..., N}

collects observations from all states for all dates through t,

p (z|Y, θ,P,H, β) = p (zT |YT , θ,P, h)
T−1∏
t=1

p (zt|zt+1,Yt,θ,P, h) . (16)

One can calculate p (zt|Yt, θ,P, h) by iterating on equation [22.4.5] in Hamilton (1994)5, the terminal

value of which (t = T ) gives us p (zT |YT , θ,P, h), the first term in (16). Furthermore,

p (zt|zt+1,Yt,θ,P, h) =
pzt,zt+1p (zt|Yt, θ,P, h)∑K

j=1 pj,zt+1p (zt = j|Yt, θ,P, h)
,

allowing us to generate zT , zT−1, ..., z1 sequentially.

3.7 Generating H.

We now define Hk = {hk, ξk,λk} and H [k] =
{
hj , ξj ,λj : j = 1, ..., κ; j 6= k

}
. Our strategy will

be to generate the elements associated with cluster k (denoted Hk) conditional on all the elements

of all the other clusters (denoted H [k]). We will, in turn, break down the generation of Hk given

Y,H [k], θ,P, z, β into a series of steps, first generating hk, then ξk conditional on hk, and finally

λk conditional on hk and λk, all conditioning on H [k].

3.7.1 Drawing hk given Y,H [k], θ,P, z, β.

From (11),

p
(
hk|Y,H [k], θ,P, z, β

)
∝ p (Y|θ, z, h) p (hk|βk)

=
N∏

n=1

p
(
Yn|hnk, h

[k], θ, z
)
p (hnk|βk) .

5Here, ξt is a (K × 1) vector whose kth element is unity when zt = k and zero otherwise, while ηt is a (K × 1)
vector whose kth element is

QN
n=1 p(ytn|θ, zt = k, h), while ξ̂0|0 = (0, 0, ..., 1)′.
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In other words, we can generate hnk for n = 1, ..., N independently across states from

Pr
(
hnk = 1|Y, h[k], θ,P, z, β

)
=

p
(
Yn|hnk = 1, h[k], θ, z

)
Pr (hnk = 1|βk)∑1

j=0 p
(
Yn|hnk = j, h[k], θ, z

)
Pr (hnk = j|βk)

,

where

Pr(hnk = j|βk) =

 1/
[
1 + exp

(
x
′
nkβk

)]
for j = 0

exp
(
x
′
nkβk

)
/

[
1 + exp

(
x
′
nkβk

)]
for j = 1

.

3.7.2 Drawing ξk given Y,hk,H
[k], θ,P, z, β.

Here, we have

p
(
ξk|Y,hk,H

[k], θ,P, z, β
)

= p (ξk|hk,β)

=
N∏

n=1

p (ξnk|hnk,βk) .

Note that if we had conditioned on λnk, then ξnk would have a Normal distribution. However, with-

out that conditioning, we are back to the logistic distribution that motivates the parameterization

in terms of (λnk,ξnk). Holmes and Held (2006) argued that generating ξnk from the unconditional

distribution and then generating λnk conditional on ξnk will give the algorithm better convergence

properties. For the posterior distribution given hnk, we know that ξnk is logistic with mean x
′
nkβk

and truncated by ξnk ≥ 0 if hnk = 1 and ξnk < 0 if hnk = 0. Recall that if u ∼ U [0, 1], then

ξ = A − log
(
u−1 − 1

)
has a logistic distribution with mean E (ξ) = A.6 Furthermore, ξ ≥ 0 iff

u ≥ 1/ (1 + exp (A)). In other words, we want to generate u from a uniform distribution over the

interval [0, 1/ (1 + exp (A))] when hnk = 0 and u ∼ U [1/ (1 + exp (A)) , 1] when hnk = 1. Note

finally that if u∗ ∼ U [0, 1], then a + (b− a)u∗ ∼ U [a, b]. Thus, we generate u∗nk ∼ U [0, 1] and

6This claim may be verified directly as follows:

Pr(ξ ≤ z) = Pr
ˆ
A− log(u−1 − 1) ≤ z

˜
= Pr

ˆ
log(u−1 − 1) ≥ A− z

˜
= Pr

ˆ
u−1 ≥ 1 + exp(A− z)

˜
= Pr

»
u ≤ 1

1 + exp(A− z)

–
=

1

1 + exp(A− z)
,

which will be recognized as the cdf of a logistic variable with mean A.
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define

unk =


1

1+exp(x′nkβk)
u∗nk if hnk = 0

1

1+exp(x′nkβk)
+

exp
“
x
′
nkβk

”
1+exp(x′nkβk)

u∗nk if hnk = 1
.

Then, ξnk = x
′
nkβk − log

(
u−1

nk − 1
)
.

3.7.3 Drawing λk given Y, ξk,hk,H
[k], θ,P, z, β.

Now,

p
(
λk|Y, ξk,hk,H

[k], θ,P, z, β
)

= p (λk|ξk,βk)

∝ p (ξk|λk,βk) p (λk)

=
N∏

n=1

p (ξnk|λnk,βk) p (λnk) .

Again, as in Holmes and Held (2006), we set r2nk =
(
ξnk − x

′
nkβk

)2
and use as a proposal density

a Generalized Inverse Gaussian density,

λ̂nk ∼ GIG
(
1/2, 1, r2

)
,

for which a draw can be generated as follows. Generate wnk the square of a standard Normal and

set

vnk = 1 +
wnk −

√
wnk (4r + Y )
2r

.

Generate a separate ûnk ∼ U [0, 1], and set

λ̂nk =

 r/vnk if ûnk ≤ 1/ (1 + vnk)

rvnk otherwise
.

We then decide to accept λ̂nk (or else repeat the above steps) using the algorithm described by

Holmes and Held (2006, p. 165).
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3.8 Drawing β given Y, θ,P, z, H.

Notice

p (β|Y, θ,P, z,H) =
κ∏

k=1

p (βk|ξk,λk) ,

which is just a standard Normal regression model for each βk of the form

ξk = Xkβk + εk,

Xk
(N×Pk)

=


x
′
1k

...

x
′
Nk

 ,
εk ∼ N (0,Wk) ,

Wk
(N×N)

= diag [λ1k, ..., λNk] .

Thus,

βk|Y, θ,P, z,H ∼ N (b∗k,B
∗
k) ,

where

b∗k =
(
B−1

k + X
′
kW

−1
k Xk

)−1 (
B−1

k bk + X′
kW

−1
k ξk

)
and

B∗
k =

(
B−1

k + X′
kW

−1
k Xk

)−1
.

3.9 Label switching.

The model described above is unidentified in two respects. First, if we were to switch the values

of µ0 with µ1, and correspondingly switch the last two columns and then the last two rows of P,

the likelihood function would be unchanged. Likewise, switching the definition of clusters (e.g.,

switching h1 with h2 and switching the first two columns and first two rows of P), the likelihood

function would be unchanged.

The first is a familiar issue in the literature, and we deal with it in a typical way, by normalizing

µn1 ≤ 0. We implement this by rejecting any generated µn that does not satisfy the restriction
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and redrawing from (15) until obtaining a draw that satisfies the normalization restriction.

The second issue is unique to our clustering approach. We mitigate this in part by imposing

the restriction that the process cannot transition from one idiosyncratic regime to another, that

is, imposing pij = 0 if i and j are both less than K − 1 and if i 6= j. We are thus ruling out

transitions in which recession for a subset of states is followed by those states going out of recession

and a different set of states going into recession. We find that once these restrictions are imposed,

for this data set, the posterior distribution is sufficiently tightly concentrated in the vicinity of a

given representation that a given Monte Carlo Markov chain does not jump across to an alternative

representation. However, different starting values can converge to different representations of the

same system.

3.10 Cross-validation.

Our next objective is to choose the number of clusters. For this, we utilize cross validation [see

Picard and Cook (1984); Gelfand, Dey, and Chang (1992); Shao (1993); and Bernardo and Smith

(1994)], which computes a quasi-out-of-sample score by estimating the model with a subset of data

and validating with the omitted data, and has been adapted for similar econometric models [e.g.,

Geweke and Keane (2007)]. We described above an algorithm to generate a draw for {ZT , θ,P,h}

conditional on the full data set YT . We now partition the data YT into R blocks,7

YT =
[
Y1 Y2 · · · YR

]

for

Yr =
[

ytr ytr+1 · · · ytr+1−1

]
,

and let Y(r) denote the full set of observations with block Yr deleted:

Y(r) =
[
Y1 · · · Yr−1 Yr+1 · · · YR

]
.

7The method used here is sometimes described as R-fold cross validation where R is the number of subsamples
over which validation is computed.
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Likewise define Z(r) to be a matrix of realizations for ZT with block r deleted:

Z(r) =
[
Z1 · · · Zr−1 Zr+1 · · · ZR

]
.

We propose to use the principle of cross-validation see how well a particular model that was based

on data Y(r) predicts the observed value of Yr using an entropy-based loss function. Specifically,

we will first generate a series of draws for {Z(r), θ,P,h} from the posterior distribution conditional

on only Y(r), implemented by running our basic procedure on the subset of data that omits block r

as if the only data available were that contained in Y(r). Let {Z [r,m], θ[r,m],P[r,m],h[r,m]} denote a

particular draw from this posterior distribution. We will then generate a draw from the distribution

of {Zr} conditional on {Z [r,m], θ[r,m],P[r,m],h[r,m],Y(r)}. Let z[r,m]
t denote the value so generated

for observation t, which implies a forecast m
z
[r,m]
t

for the value of yt. We will judge a model to be

superior when

M−1
M∑

m=1

R∑
r=1

tr+1−1∑
t=tr

{
log

∣∣∣Ω[r,m]
∣∣∣ +

(
yt −m

z
[r,m]
t

)′ (
Ω[r,m]

)−1 (
yt −m

z
[r,m]
t

)}
(17)

is smaller.

The necessary step for this process is to generate values for z[r,m]
t . Note first that the values

for Z [r,m] and P[r,m] are the only relevant conditioning information:

p(Zr|Z [r,m], θ[r,m],P[r,m],h[r,m],Y(r)) = p(Zr|Z [r,m],P[r,m]).

Consider first generation for the last block (r = R). From the Markov chain property of

{zt}, this is trivially accomplished by setting z
[r,m]
t = k with probability p

[r,m]

z
[r,m]
t−1 ,k

sequentially for

t = tR, tR+1, ..., T, where p[r,m]
ij denotes the transition probability for a transition from zt−1 = i to

zt = j associated with the draw m from the posterior distribution given Y(r) and z
[r,m]
t−1 denotes

the previously generated value. This iteration begins for t = tR by setting z[r,m]
tR−1 to the draw r,m

value for ztR−1.

Consider next generation for the first block (r = 1). Here, we make use of the reverse transition

probabilities

q
[r,m]
ij = Pr(zt = i|zt+1 = j,P[r,m]),
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which can be calculated from the following considerations:

Pr(zt = i|zt+1 = j) =
Pr(zt = i, zt+1 = j)

Pr(zt+1 = j)

=
Pr(zt = i) Pr(zt+1 = j|zt = i)

Pr(zt+1 = j)

=
πipij

πj

for pij the forward transition probabilities and πi the ergodic probabilities. The latter can be

calculated as in Hamilton (1994, eq. [22.2.26]):


π1

...

πK

 = (A′A)−1A′eK+1

A =

 IK −P

1′


for 1 a (K × 1) vector of ones and eK+1 a (K + 1) × 1 vector whose K + 1 element is unity and

others are all zero. Thus,

q
[r,m]
ij =

π
[r,m]
i p

[r,m]
ij

π
[r,m]
j

.

We thus generate z[1,m]
t = k with probability q[1,m]

k,z
[r,1]
t+1

sequentially backwards for t = t2−1, t2−2, ..., 1.

We can generate z’s for the middle blocks r = 2, ..., R − 1 adapting the approach in Hamilton

(1994, p. 701). For t = tr, tr + 1, ...., tr+1, let

p̃
[r,m]
k,t = Pr(zt = k|Z [r,m]

1 , ...,Z [r,m]
r−1 ,P

[r,m])

and collect these scalars in the vector ξ̃
[r,m]
t =

(
p̃
[r,m]
1,t , p̃

[r,m]
2,t , ..., p̃

[r,m]
K,t

)′
. This can be calculated

recursively from

ξ̃
[r,m]
t = P[r,m]ξ̃

[r,m]
t−1

for t = tr, tr + 1, ..., tr+1 starting from ξ̃
[r,m]
tr−1 the (K × 1) vector whose element in position z

[r,m]
tr−1

is unity and all other elements are zero, and where P[r,m] is the matrix of transition probabilities
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(arranged so that columns sum to unity). Let S [r,m] =
{
Z [r,m]

1 , ...,Z [r,m]
r−1 ,P

[r,m]
}

and notice next

that for any t ∈ {tr, ..., tr+1 − 1},

Pr(zt = j|zt+1 = i,S [r,m]) =
Pr(zt = j, zt+1 = i|S [r,m])

Pr(zt+1 = i|S [r,m])

=
p̃
[r,m]
j,t p

[r,m]
ji

p̃i,t+1

from which

Pr(zt = j|Z [r,m]
1 , ...,Z [r,m]

r−1 ,Z
[r,m]
r+1 , ...,Z

[r,m]
R ,P[r,m]} =

p̃
[r,m]
j,t p

[r,m]
ji

p̃
z
[r,m]
t+1 ,t+1

.

We can thus generate a value for z[r,m]
tr+1−1 from the above equation for t = tr+1 − 1 given the known

value z[r,m]
tr+1

and can generate the values for t = tr+1 − 2, tr+1 − 3, ..., tr recursively by iterating on

the equation backwards.

4 Empirical results.

The data used to measure state-level business cycles are the seasonally adjusted, annualized quarter-

to-quarter growth rates of payroll employment.8,9 The sample period is 1956:Q2 to 2007:Q4; Alaska

and Hawaii are excluded. These data were obtained from the Bureau of Labor Statistics (BLS).

In addition to the time series data, the model in the preceding section requires a set of state-level

covariates characterizing the ex ante likelihood of membership in a given cluster. We report results

for a specification with Pk = 4 covariates used to explain the cluster affiliations of each state, with

the same vector of explanatory variables used for each cluster (xnk = xn for k = 1, ..., κ). The

vector xn includes barrels of oil produced per 100 dollars of state GDP, manufacturing employment

share, financial activities employment share, and the share of total state employment accounted for

by small firms.10 We normalize each variable by dividing by the sample mean. Values for these
8The measure most synonymous with GDP at the state level is Gross State Product (GSP). Unfortunately, GSP

is available only at an annual frequency and at a two-year lag, making it nonviable for a study of business cycles.
9Even at the quarterly frequency, the growth rate in state-level employment can experience large swings caused

by idiosyncratic state experiences (for example, mining strikes in West Virginia). To focus on the estimation of the
business cycle, we check for outliers defined as observations more than three standard deviations from each series’
mean. We then set these values at two standard deviations from the series mean.

10The oil share was calculated as 100 times the number of barrels of crude oil produced in the state in 1984 (from the
Energy Information Administration, http://tonto.eia.doe.gov/dnav/pet/pet crd crpdn adc mbbl m.htm) divided by
1984 state personal income (from the Census Bureau, http://www.census.gov/compendia/statab/tables/08s0658.xls).
The manufacturing and financial activities shares of employment by state were calculated as the average of the annual
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explanatory variables are displayed in Figure 1.

We report results for some of the parameters and unobserved latent variables of interest based

on the five pooled runs of 25,000 Gibbs sampler iterations, having discarded an initial burn-in of

250,000 iterations each. Table 2 displays the cross validation results using R = 10 subsamples

for various values of k, the number of idiosyncratic clusters. Cross validation chooses κ = 3

idiosyncratic clusters with κ = 4 being the second closest alternative. We also calculated the

comparable cross-validation measure when a single-equation Markov-switching model is estimated

separately for each state.11 Note that the latter specification estimates 96 separate regime tran-

sition probabilities (pn,11 and pn,22 for n = 1, 2, ..., 48), whereas the cluster specification requires

only 2(κ+ 1) + κ(κ− 1) transition probabilities – for example, 14 parameters for our favored case

of κ = 3. Although the cluster specification is much less richly parameterized, its substantially

better fit reflects the feature in the data that knowing whether state n is in recession at date t is

extremely helpful for predicting whether state ` will be in recession at date t+ 1.

Table 3 shows the posterior medians and means for the model parameters µ0, µ1, and σ2

for each state. Table 4 gives the posterior means of the logistic coefficients βk associated with

each of the idiosyncratic clusters (k = 1, ..., 3), with a bold entry signifying that 68 percent of the

posterior draws were on the same side of zero as the reported posterior mean. We also translate

these coefficients into discrete derivatives (denoted δk). The ith element of δk has the following

interpretation. Let xi = N−1
∑N

n=1 xin denote the average value for the ith explanatory variable.

Suppose we compare two states, each of which has xjn = xj for all j 6= i, but in the first state,

characteristic i is one standard deviation below the average xi, and in the other state, characteristic

i is one standard deviation above the average. How would the probability of inclusion in cluster

k, as calculated from (2), differ between the two states? The value for this magnitude implied

by the posterior mean for βk is reported as the ith element of the vector δk in Table 4. For

example, a state that was average in all respects but one standard deviation below average in the

importance of oil production would be rather unlikely to be included in cluster 1, whereas a state

one standard deviation above the average would be quite likely to be included. An important role

industry (NAICS) shares of total payroll employment from 1990-2006, also from the BLS. The share of small firms
was computed as an average of the share of total employment in firms with fewer than 100 employees and was taken
from the Statistics of U.S. Businesses data set.

11For the standard Markov-switching model, the cross validation is taken as the sum of (17) over all 48 states.
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for manufacturing or finance makes a state less likely to be part of this cluster. States with an

important role for finance were less likely to be part of cluster 2 and more likely to be included in

cluster 3.

Table 5 reports posterior means of the regime transition probabilities pij . Starting with the

first column, suppose that zt = 1 in quarter t, which would mean that only those states that are

included in cluster 1 would be in recession. We have ruled out a priori the possibility that these

states go out of recession and a new different subset of states begins a recession at t + 1 (that is,

we imposed p12 = p13 = 0). Although we did not impose p14 = 0, the posterior mean of p14, in fact,

turns out to be quite close to zero. Thus, if the states in cluster 1 go into recession, a national

recession is unlikely. Moreover, the cluster 1 recession is relatively persistent, lasting an average of

3.2 quarters. By contrast, if the states in cluster 2 are in recession (i.e., zt = 2), we see a national

recession eventually arrive, usually within two and a half quarters (p24 = 0.40, p25 = 0). Similarly,

the regime zt = 3 would be characterized as the subset of states that have extended recessions.

The regime zt = 3 can be entered either through expansion or recession and typically signals a

forthcoming national recession.

Figure 2 plots the posterior means for the regime probabilities given the data. The top panel

is calculated as the fraction out of the 125,000 simulations for which zt for the indicated quarter is

equal to 4 – that is, it shows the posterior probability of a national recession. These correspond

fairly closely to the traditional NBER dates, which are indicated by shaded regions in the top

panel, with the exception of a few short downturns (no longer than one quarter) based on state

employment data that are not characterized by the NBER as a national recession. Also, our

framework would date both the 1990-91 and 2001 recessions as substantially longer based on state

employment growth than the traditional NBER dates specify.12 Interestingly, the recession that

the NBER dates as 2007:Q4-2009:Q2 was recognized by this algorithm as beginning in 2007:Q2,

and this assessment was made using data only through 2007:Q4. The approach thus provided an

earlier signal of the most recent downturn than was provided by most other approaches at the time.

The shaded regions in the bottom three panels of Figure 2 are based on the zt = 4 dates (when

Pr(zt = 4) > 0.99) rather than the NBER dates, to clarify the nature of the estimated dynamics.
12This result is consistent with the so-called jobless recovery periods [see Koenders and Rogerson (2005) for a

survey].
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The cluster 1 states experienced a uniquely idiosyncratic recession during the oil price collapse in

the mid-1980s, as well as several briefer episodes in the 1950s and 1960s. The recession of 1957-58

was preceded by a downturn in the cluster 2 states, and there is also some possibility that the

recessions of 1980 and 2001 began in these states. By contrast, a downturn in cluster 3 states

preceded the national downturns in 1973-75, 1990-91, and 2007-09, suggesting a possible role of

financial factors in precipitating those recessions. Cluster 3 was also slow to recover from the

1990-91 recession.

Figure 3 indicates which states are affected by the respective idiosyncratic regimes and conveys

some idea of the role played by the exogenous state characteristics xn and observed employment

growth rates Y in associating states with particular clusters. The first column of Figure 3 sum-

marizes the inference we would draw if we knew nothing about the state other than the state

characteristics xn and the likely values for βk as inferred from the employment data; that is, it

reports for each state n and cluster k the value of

∫
exp(x

′
nβk)

1 + exp(x′
nβk)

f(βk|Y).

The second column of Figure 3 reports the posterior probability of cluster designations given all

the observed data:

p(hnk = 1|Y).

The information based on state characteristics alone – specifically, the importance of oil for the

state – gives a fairly sharp designation for the states included in cluster 1 (see row 1, column 1

of Figure 3). The first and second columns of the first row of Figure 3 have much in common.

However, this appears to be because the particular pattern for the employment behavior of states

in this cluster is so closely aligned with the importance of oil production for the state. A cluster

designation similar to what we see in the first row of Figure 3 has emerged from virtually all

of the specifications we have studied. Specifically, we also estimated a version of the model

with no explanatory variables at all and found a similar grouping of states that experienced their

own separate recession in the mid-1980s. For that matter, we found the same pattern when we
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estimated models separately for each state in isolation. The conclusion that the oil-producing

states experienced their own recession at the time of the oil price collapse appears to be fairly

robust.

For cluster 2, the information content in the prior based on the state characteristics is not as

sharp. A priori, states belonging to cluster 2 appear to be those not belonging to the oil-producing

cluster. The observed employment growth rates refine and sharpen these designations considerably

(row 2, column 2). Based on both information from the prior and the state-level employment

data, the cluster appears to include primarily the manufacturing states in the southeast, Indiana,

Michigan, and a few scattered states around the Pacific Northwest and Maine.

Based on state-level characteristics, cluster 3 appears a priori likely to consist of states with a

higher employment share in financial industries but without a high component of oil production

(row 3, column 1). Again, the business cycle data refine these designations. The posterior cluster

probabilities for cluster 3 place high likelihood on including a number of states on the East Coast

with the addition of California and Arizona.

Results for κ = 4 clusters have a similar character, with one cluster capturing the mid-1980s

recession in the oil-producing states, and the other three clusters characterized by groups of states

that go into recession a little earlier or come out of recession a little later than other states. It

is interesting that this feature – i.e., that recessions tend to be a national phenomenon, with

idiosyncrasies manifest in the timing of when they start or stop in each state – is a broad finding

from different specifications of our approach. This suggests that although different recessions may

have different original causes, the key defining characteristic may be their breadth– what makes an

episode a recession is the fact that everybody is experiencing problems at about the same time.

5 Conclusion

Two broad conclusions emerge from our results. First, we have found substantial heterogeneity

across recessions. Different recessions seemed to begin in different ways. In distinct episodes,

different parts of the country could have manifested the first signs of a downturn, and the oil and

agricultural states have on occasion experienced a recession while the rest of the country appears

to be doing fine. Based on the geographic patterns, recessions are not all alike, but appear to differ
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in their causes and propagation.

On the other hand, we were surprised that, despite this clear heterogeneity, there nevertheless

appears to be a strong national component to most recessions. Although our framework allowed

for the possibility of groups of states at times moving in complete isolation of the rest of the nation,

we find such behavior to be the exception rather than the rule. The primary differences we find

across states come down to timing – when did the recession begin and end for that state – and

not whether the state was able to avoid a national downturn altogether. This suggests to us that

although recessions are different in terms of their causes, there is something similar about the event

itself. We would propose that a salient characteristic of a recession is the comovement across

states and the eventual tendency for the entire nation or at least a very large region to experience

contraction at the same time.
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Table 1: Priors for Estimation
Parameter Prior Distribution Hyperparameters
[µ0n, µ1n]′ N

(
m, σ2M

)
m = [1,−2]′ ; M = I2 ∀n

σ−2
n Γ

(
ν
2 ,

δ
2

)
ν = 0 ; δ = 0 ∀n

P D (α) αi = 0 ∀i
βk N (b,B) b = 0p ; B =1

2Ip ∀k

Table 2: Cross-Validation Results1

Number of Clusters
2 3 4 5 6 7 Markov3

Score2 2122.4 2056.3 2071.5 2160.2 2146.3 2167.6 2179.1
1 Cross validation uses 10 subsample splits.

2 Score = M−1 ∑M
m=1

∑R
r=1

∑tr+1−1
t=tr

{
log

∣∣Ω[r,m]
∣∣ +

(
yt −m

z
[r,m]
t

)′ (
Ω[r,m]

)−1
(
yt −m

z
[r,m]
t

)}
3 Markov is the model with independent Markov-switching states [e.g., Owyang, Piger, and Wall (2005)].
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Table 4: Estimated logistic coefficients and derivatives
(posterior means)

Cluster 1 Cluster 2 Cluster 3
β1 δ1 β2 δ2 β3 δ3

Constant -0.62 - -0.24 - -0.02 -
Oil Production 1.22 0.84 -0.16 -0.17 -1.02 -0.76
Manufacturing -1.03 -0.11 0.35 0.05 -0.98 -0.11
Finance -0.61 -0.04 -0.64 -0.06 0.75 0.06
Small Firms -0.34 -0.02 -0.11 -0.01 -0.09 0.00
Notes: Bold indicates zero is outside the 68 percent coverage interval.

Oil production is measured as the share of income.

Manufacturing and Finance are measured as the industry share of employment.

Small firms are measured as share of employment in firms with < 100 employees.

Table 5: Estimated regime transition probabilities (posterior means)
from from from from from

Cluster 1 Cluster 2 Cluster 3 Recession Expansion
to Cluster 1 0.69 0 0 0.03 0.02
to Cluster 2 0 0.60 0 0.00 0.00
to Cluster 3 0 0 0.73 0.03 0.02
to Recession 0.01 0.40 0.24 0.76 0.06
to Expansion 0.29 0.00 0.03 0.18 0.89
NOTES: pij for i = 1, ..., 3 and i 6= j were restricted a priori to be zero (indicated by boldface).

30



Figure 1. Values of explanatory variables for logistic probabilities across states. 
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Figure 2. Posterior Probabilities of aggregate regimes. 
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Notes to Figure 2.  Top panel: posterior probability that zt = 4, with shaded regions 
corresponding to dates of NBER recessions. Bottom three panels: posterior probability 
that zt = 1, 2, 3, with shaded regions corresponding to dates for which posterior 
probability that zt = 4 is greater than 0.99. 



Figure 3. Probabilities of cluster affiliations based on exogenous explanatory variables 
alone (first column) and based on exogenous explanatory variables plus observed 
employment growth patterns (second column). 
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Notes to Figure 3. First column: the color for state n for cluster k indicates the average 
value of [ ]exp( ) / 1 exp( )n k n kβ β′ ′+x x  across 125,000 simulated draws for kβ .  Second 
column: the color for state n for cluster k indicates the average value of nkh across 
125,000 simulated draws for nkh . 


