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be a Borel set, and hence a Lebesgue measurable set. But this is
contrary to the choice of W as a nonmeasurable set.

We state this result formally.

17.11 THEOREM. There exist Lebesgue measurable subsets of
R that are not Borel sets.

We observe that we have also given an example of a Lebesgue
measurable set W whose image under a strictly monotone homeo-
morphism (and hence Borel measurable function) ¢ is not Lebesgue
measurable. Thus, although a homeomorphism always maps Borel

sets to Borel sets, it may map a Lebesgue measurable set to a non-
measurable set.
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the digits in the ternary expansion of «' are equal to those in the
expansion of z'" up to the kth digit, but the kth digit in the ternary
expansion of z’ is 0 and the kth digit in the ternary expansion of
2" is 2. Hence it follows that o) < p(z") so that ¢ is a mono-
tone nondecreasing map of F into I. Note, however, that ¢ is
not one-one; for example, if z/ = (0.0220)3 < z" = (0.0202)3, then
p(z') = (0.0110)2 = (0.0101)2 = @(z"). In fact, p(z') = p(z") for
£’ < " if and only if these points have the form

:E' = (0.6102 e Ck0_2_)3, :B” = (0.0102 - Ck29_)3,

and this holds if and only if =’ and 2" are left and right end points
of a middle third interval

(0.c1c2- - - ckl0)z3 <z < (0.cic2 - -- cx20)3,

removed in the process of constructing F. It is also clear that ¢
maps F onto I, since if y = (0.bybp...)2 8 the binary expansion of
an arbitrary number in I, then y is the image under ¢ of the number
T = (0.(2b1)(2b2) .. .)3 in F.

We now extend ¢ to be defined on all of I by defining it to be
constant on each of the middle third sets that are removed from I in
the construction of F. We have noted that ¢ takes the same value
at both end points of such a middle third set. In particular,

o(z) = (0.01)2 = (0.10)2 = 3

for all z satisfying (0.02)3 = % <z< % = (0.20)3. Also,

©|00

cp(:c):% for %S.’L‘S%; cp(z):% for %_<_a:§ -

This extended function, which we will continue to denote by the letter
¢, is evidently a monotone nondecreasing function mapping I onto
I and does not have any jump discontinuities, since every value of
I is taken on at least once. Therefore the extended function ¢ is
continuous at every point of I. We also note that the derivative
¢/(x) = 0 for all points = € I — F, since ¢ is constant on some
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neighborhood of such a point. This extended ¢ is often called the
Lebesgue singular function. Since the Lebesgue measure of the
set F is 0, we see that the derivative of ¢ exists almost everywhere
and is equal to 0. However, ¢ is far from being a constant function,
since it maps I onto the set I.

We now define ¥ on I to the closed interval [0,2] by
Y(z) =z + p(2)-

It is clear that ¢ is a monotone nondecreasing function, since it is the
sum of two such functions. In fact, ¥ is strictly increasing on I, so
that 1 is a one-one map of I onto the closed interval [0, 2]. Moreover,
since 9 is the sum of two continuous functions, it is continuous on
I. It follows that the inverse function ¥~ !, which maps [0, 2] onto
I, is also continuous. Therefore, ¥ is a homeomorphism (that is, a
continuous function whose inverse is also continuous) of I and 0, 2],
and ¥ has the property that if B is a Borel set on R, then both ¥(B)
and v~ 1(B) are Borel sets.

Since ¢ is constant on each of the middle third sets in I-F, we
see that 1 maps such a middle third set into an interval of the same
length. Consequently,

m(y(I - F)) =m(I - F)=1,

and since m([O, 2]) =2, it follows from the fact that [0,2] = PY(F)U
(I — F) and Y(F)YNy(I - F) = ¢, that we have

2 1n(1/r(F)) p m(yp(I F)).

Consequently, we must have 1::.(1/'(1")) I We conclude that the
homeomorphism 1 maps the set I, which has Lebengue mensire 0,
to a set with Lebesgue measure oqual to 1.

Since ¥(F) has positive measure, we know from Theovem 177
that it contains a set W that is not Lebesgue menstrablo. Then the
set Wy := ¢ (W) is a subset of Fand hence dnoa Lehengue null
set; consequently, W, is a Lebesgue moensurable wot. However, W,
cannot be a Borel set, since if it were, then W (W) would also
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PROOF. Let G and Gy be defined by
G:= Q°®V2Z” and Go:= QF & (2v2)ZP,
and let G be defined by
Gy :=(V2,...,V2)® Go.
It is easy to see that

G= {(ql +n1\/§:""QP+nP\/i) 1qi € Qvni € Z}1
Go={(q1 +2m1V2, ..., + 2,V2) 1 0 € Q, i € Z},
Gl = {(q1 +(2n1 + l)ﬂ)"')QP + (2np + 1)\/5) 1q;i € Qyni € Z}

We note that G and Gg are subgroups of RP under addition, and
that G, Go and G, are dense in RP. It is also clear that

G=Go® Gy and GoNG; =0.

For each pair z,y € RP, we define z & y to mean that z —y € G,
so that = is an equivalence relation on RP. We use the Axiom of
Choice to obtain a set £ C RP containing a single element from each
equivalence class in R”, so that if g # ¢/, then (g €)N (gdE)=0.
Consequently, we have the disjoint decomposition

R = J(9@8).

geG

We now define our desired set by

(17.5) U=G6et=Jgoo
g€Go

We note that since Go N Gy = 0, it follows that the complement U°
is given by
u=cot=Jgos).
g€EG)
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Let F' C U be measurable; for the purpose of obtaining a contradic-
tion, we assume that m(F) > 0. If so, then by Theorem 17.3 there is
a ball contained in F© F CU ©U. But, since G, is dense in R?, it
must meet this ball and hence G; meets i © U. In order for this to
be true there must exist an element g; € G, of the form go + €1 — ez,
where go € Gp and ej,ep € €. Therefore e; —e2 — g1 — go € G,
which implies that e; =~ ez and hence e; = €2 and ¢, go. Since
G1 N Gy = 0, we have obtained a contradiction. Therefore, we con-
clude that any measurable subset of U is a null set.

We have already noted that U¢ = Gy ® €. Consequently, if
Fy CU°, then F; has the form

Fr=W2,...,V2)o F

for some subset F of U. Moreover, I| is measurable if and only
if its translate F' is measurable. But it follows from the preceding
paragraph that the only measurable subsets of U are null sets. By
the translation invariance, we infer that Fy is also a null set.

We conclude by noting that & must be nonmeasurable. For, if
it is measurable, then its complement U° = (\/§, ...,V2)®U, being
a translate, is also measurable. By what we have seen above, both
U and its complement U° must be null sets . Consequently, RPis a
null set, a contradiction showing that U is nonmeasurable.  Q.E.D.

THE EXISTENCE OF NON-BOREL SETS

Let F be the Cantor set, obtained by deleting “middle thirds”
from the unit interval I := [0,1]. If z € F, then @ has a unique
ternary (that is, base 3) expansion represented by

&r (0.(‘“‘2(‘3 o .):|,
where cx = 0 or 2 for all k € N. Wo define n mapping ¢ F o I hy
e(x) == (0.(c1/2)(e2/2)(ea/2) )0

using the binary (that is, base 2) expansion of the nmber. Nlonrly,
if 2/,2"” € F and 2’ < z”, then there oxinty A ¢ N nach that all of
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Case (ii). Suppose that m(V) = 0. Since Lebesgue measure is
translation invariant, we have m(g®V) = 0 for all ¢ € Q". It follows
from the countable additivity of m and from (17.2) that

+o00
0<m(RP) =) m(g®V)=0.

i=1

Therefore, we have m(RP) = 0, which implies that the measure of
every measurable subset in R? is equal to 0, which is a contradiction.
Therefore, Vitali’s set is not Lebesgue measurable. Q.E.D.

We now show that any set with positive outer measure contains
a subset that is not Lebesgue measurable. (Thus, nonmeasurable sets
are everywhere in RP!)

17.7 THEOREM. Any set E C RP with m*(E) > 0 contains a
nonmeasurable subset.

PROOF. By the preceding theorem, the translates Vg, = ¢; ® V
are not measurable; however, it is conceivable that their intersections
E; := E NV, might be measurable. However, if E; is measurable
for some i and has positive measure, then it follows from Theorem
17.3 that the difference set F; © E; must contain a ball. But since
I5; C V,,, it follows that the difference set Vg © Vg, = VOV must
also contain a ball, which is contrary to the construction of V. We
conclude that the sets F; that are measurable must be null sets. It
follows from (17.2) that

+00 +00
E=|JEnv,=JE.
i=1 i=1

If all of the sets E; are measurable, we have just seen that they must
be null sets, so E is also a null set, contrary to hypothesis. Therefore,
at least one of the sets E; is not Lebesgue measurable. Q.E.D.

We now show that every measurable set with finite positive mea-
sure has a nonadditive decomposition into the union of two sets that
nre nonmeasurable.
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17.8 THEOREM. Let E be a Lebesgue measurable set such that

0 < m(E) < 4o0o. Then there exist nonmeasurable subsets B and C
of E such that E=BUC, BNC =0, and

(17.3) m(E) <m*(B) + m*(C).

PROOF. It follows from Theorem 17.7 that the set [ has a non-
measurable subset B, and we let C :— I£ — 3, so that I+ BUC
and BN C = 0. Moreover, since I3
nonmeasurable. We conclude from the subadditivity of mn* that

12 — C, the set. C must also be

(17.4) m*(E) <m*(B) | m*(C),

However, if equality holds in (17.4), then it follows from Theorem
16.3 that B is a measurable set, which is a contradiction. Therefore,
we have (17.3). Q.E.D.

We will now see that every nonmeasurable set with finite outer
measure is part of a nonadditive decomposition of a measurable set.

17.9 THEOREM. Let B be a nonmeasurable set such that
m*(B) < 400, and let H be a Gs-set set with B C H and m*(B) =
m(H). Then C := H — B is also nonmeasurable and

m(H) = m(BUC) < m*(B) +m*(C).

PROOF. The existence of H was established in Theorem 15H.1(h).
Since B = H—C, it follows that C must be nonmeasurable. ‘Therefore
m*(C) > 0, whence the strict inequality follows. Q1D

We now show that there exists a nonmensurable sot that can be
said to be “ubiquitous”, since every measurablo subrot of 10 (and ol
its complement) is a null set.

17.10 THEOREM. There exists n nonmonsurnblo wot 10 ¢ R"
such that every Lebesgue measurable subwot of oo null wet, and
every measurable subset of its complomont 14" In nlu n null ret.
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17.2 LEMMA. Let K € RP be a compact set with m(K) > 0.
Then the difference set K © K contains an open ball with center at
the origin of RP.

PROOF. Since 0 < m(K) < +oo, there exists an open set G
such that K C G and m(G) < 2m(K). Since K is compact and
G° = RP — G is closed, we conclude that

6 :=dist(K,G°) > 0.

This implies that if ||z|| = dist(z,0) < 6, thenz® K C G.

We claim that (z ® K)N K # 0. For, if not, then since we have
KU(z®K) C G, it follows from (z® K)N K = () and the additivity
of m that

2m(K) = m(K) + m(z ® K) = m(K U (z ® K))
< m(G) < 2m(K),

which is a contradiction. Therefore (z ® K) N K # 0 for all z with
||z|| < 6. But this implies that if ||z|| < 6, then there exist ki, k2 € K
such that = — ky — ko € K © K. Therefore the set K © K contains
the open ball with center 0 and radius 6. Q.E.D.

17.3 TneoreM. If £ C RP is any Lebesgue measurable set
with m(E) > 0, then the difference set E © E contains an open ball
with center 0.

PROOF. Forn € N, let E,, := {z € E : ||z|| < n}. Since m(E) =
lim,, m(E,), we have m(E,) > 0 for n sufficiently large, say for all
n > ng. We note that 0 < m(E,,) < +oo. By Theorem 15.9 there
exists a compact set K C E,, C E with 0 < (1/2)m(Ey,) < m(K).
Since K C E, it is clear that K © K C E © E. By the preceding
lemma, we conclude that K © K contains an open ball with center 0;
therefore, so does E © E. Q.E.D.

17.4 DEFINITION. If z,y € RP, we say that z is rationally
equivalent to y and write z ~ y if z —y € QP; that is, if the
components z; —y; € Q foralli =1,2,...,p.
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It is easy to see that rational equivalence is an equivalence rela-
tion on the set RP [in the sense that (i) « ~ =; (ii) « ~ y if and only
if y ~ «; and (iii)  ~ y and y ~ z imply that = ~ z|. Hence rational
equivalence on RP divides R” into a collection of disjoint equivalence
classes. Using the Axiom of Choice, we form a set V by choosing one
representative from each equivalence class, so that if v1,v9 € V and
v; ~ vg, then v; = vo. We refer to any such set V as Vitali’s set.
Moreover, if ¢ € QF, we write

(17.1) V,=qdV.

It is easy to see that if ¢,¢’ € Q",q / ¢, then V, "1V, 0.
! 1 1

17.5 LEMMA. Let q1, q2, ... be an enumeration of the countable
set QP. Then RP can be represented by the disjoint union:

+ 00 } oo
(17.2) R = JVo = J@ o).
i=1

i=1

Therefore, every element x € RP has a unique representation in the
form z = ¢; + v for some ¢; and some v € V.

PROOF. If z € RP, then z belongs to a unique rational equiva-
lence class. If v is the representative of this class, then z —v = g; for
some i, s0 ¢ = ¢; + v € Vy,. If i # j, then the sets Vg, and V,; are
disjoint, as noted above. Q.E.D.

17.6 THEOREM. Vitali’s set V is not Lebesgue mensurable.

PROOF. Suppose, on the contrary, that the set V is mensurnble.
We have two possibilities: (i) m(V) > 0, or (ii) m(V) 0.

Case (i). If m(V) > 0, then Theorem 17.3 implien that the
difference set ¥V © V contains an open ball with center 00 Therelore
there exists a nonzero element 2 in this ball, all of whose coordinnten
are rational numbers. Since @ belongs to thin ball, there are elements
vy, vg € Vsuch that z - vy —wy. But thin means that vy oy, whenee
we conclude that v; — vg and = 0, n contrndiction. Therefore, this
case is not possible.
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for some n € N. The preceding theorem is useful in establishing the
measurability of a set E C J,.

16.4 COROLLARY. A set E C J, is Lebesgue measurable if and
only if

(16.2) m(Jn) = m*(E) + m*(Jn — E).

PROOF. This follows immediately from Theorem 16.3 and the
fact that J, is measurable (Theorem 13.7). Q.E.D.

For an unbounded set E C RP, the next result is useful.

16.5 THEOREM. A set E C RP is Lebesgue measurable if and
only if the sets E N J,, are measurable for eachn € N.

PROOF. If E is measurable, then the result is trivial.

Conversely, if each set E, := ENJy is measurable, then it follows
from the fact that E = |J}°3 En, that E is measurable. Q.E.D.

INNER MEASURE

Readers may initially have been surprised that we have focused
our attention on outer measure and have not defined a notion of the
“nner measure” of a set by inscribing a collection of cells inside a
given set and taking the supremum of the resulting inner approxima-
tions. One of the reasons we have not done so is that, in general, a
measurable set — even one with positive measure — may not con-
tain any cells with positive volume. (Construct an example, please.)
However, there is a way around this difficulty for a set E that is con-
tained in a cell J,. Namely, we define the inner measure my(E) of
E to be the difference

ma(E) :=m(Jn) —m*(Jn — E).

With this definition, Corollary 16.4 takes the form: Aset EC J,
is Lebesgue measurable if and only if its inner measure and its outer
measure are equal. This observation is often used in the process of
defining Lebesgue measure in the interval [0, 1].

CHAPTER 17

Nonmeasurable and Non-Borel sets

In this chapter we will establish the existence of a set in R” that
is not measurable. In order to do so, we will need to use the “Axiom of
Choice”. The first person to give an example of a nonmeasurable set
was Giuseppe Vitali, in 1905. In 1970, R. M. Solovay showed that the
use of the Axiom of Choice is essential, in a certain technical sense.
Although other constructions of nonmeasurable sets have been given,
the author is not aware of any that are simpler than Vitali’s example.
We will also obtain some other results about the nonadditivity that
is characteristic of nonmeasurable sets, and establish the existence
of a nonmeasurable set such that neither the set nor its complement.
contains any measurable sets that are not null sets. At the end of this
chapter we give a proof of the existence of a Lebesgue mensurablo set
in R that is not a Borel set.

The following definition will be uscful.

17.1 DEFINITION. If A C RP, then its difference wot i dotined
to be
AoA: {xz—y: xpc A)

It is trivial, but useful, to observe that (A C I then AA C Haold
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and if we take A := F, we obtain

m*(F) =m*(FNE)+m*(F - E).
Therefore, we have

m*(EUF) +m*(ENF) = [m(E) + m*(F — E)] + m*(ENF)
= m(E) + [m*(F - E) + m*(ENF)]
= m(E) + m*(F),

as asserted.

(b) If ENF = @, then m*(E N F) = 0, so the conclusion is
immediate.

(c) Let H:= F —E,sothat F= EUH and ENH = 0.
Hence, from (b) we have

m*(F) =m*(EU H) =m(E)+m'(H)
=m(E) + m*(F - E).

Since m(F) < too, we know that m*(F') and m*(F — E) are either
both | 0o or both finite. Hence the assertion follows. Q.E.D.

We saw in Lemma 15.1(b) that for any set E C RP there exists
a Gy-set H such that I C H and m*(E) = m(H). It also follows
that E is Lebesgue measurable if and only if H — E is a null set. The
next theorem is somewhat remarkable in that a similar approximation
from within guarantees the measurability of a set E with finite outer
measure merely from the equality of the outer measures of the sets.

16.2 THEOREM. If m*(E) < +oo, then E is measurable if and
only if there is a measurable set B C E with m(B) = m*(E).

PROOF. If F is measurable, then we can obviously take B := E.

On the other hand, if B € £, B C E, and m(B) = m*(E), then
it follows from Theorem 16.1(c) that

m*(E — B) = m*(E) — m(B) = 0.
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Consequently, the null set E— B is Lebesgue measurable and therefore
E = (E — B) U B is also measurable. Q.E.D.

CARATHEODORY REVISITED

We now obtain a modification of the Carathéodory condition
that involves only testing with a single measurable set of finite mea-
sure that contains the given set.

16.3 THEOREM. Let A C RP be Lebesgue measurable with
m(A) < +oo. Then E C A is Lebesgue measurable if and only if

(16.1) m(A) = m*(E) + m*(A - F).

Proof. If E is measurable, the assertion follows immediately
from the Carathéodory condition.

Conversely, by Theorem 15.1(b) applied to the set A — F, there
is a Gg-set H with A — E C H and m*(A — I5) ~ m(H). Since
A—ECANHC H, it follows that

m*(A — E) <m(AN H) < m(H) = m*(A - E),
whence m(AN H) = m*(A — E). But since AN H is measurable and
AN(ANH)=AnH and A-(ANH)=A-H,
we conclude that
m(A) = m(AN H) + m(A — H) =m*(A - E) + m(A - H).
If we use equation (16.1), we deduce that
m(A — H) — m*(I9).

But since B := A — H C E, it follows from ‘Theorem 162 that 15 ix
Lebesgue measurable, as claimed. Qb

It is often the case that we are concorned with notn that nre
contained in some large cell, such as

e B 7| S B TR TI B
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then C is measurable and E — C C E — C,, for all natural numbers
n € N, and it follows that m*(E —C) = 0. Therefore Z := E~Cisa
Lebesgue null set and hence is measurable. Consequently, E = CUZ
is Lebesgue measurable. Q.E.D.

APPROXIMATION BY CELLS

We now show that a set with finite measure can be approximated
by a finite union of bounded cells. We recall that the symmetric
difference of two sets A, B is the set AAB := (A — B)U (B — A).

15.10 THEOREM. If E € L has finite measure and € > 0, then
there exist bounded open cells I, ..., I, such that if K = Uf=l I;,
then m(EAK) < €.

PROOF. As in the proof of Lemma 15.1, there exists a sequence
(I;)}5 of bounded open cells covering E such that if G := Ui L,
then m(G) < m(E) + ¢/2. Similarly, by Theorem 15.9, there exists
a compact set C C E such that m(E —C) < ¢/2. It follows from the
Heine-Borel Theorem that a finite number of the cells, say Iy, ..., In
cover C. If K := U?:l I;, thensince CCKCGand CCECGQG, it

follows that

m(EAK) — m(E - K) + m(K — E)
<m(E -C)+m(G-FE)<e. Q.E.D.
It is left as an exercise to show that the cells Iy,..., I, can be

chosen to be closed, or half-open, or pairwise disjoint.

SRS —

CHAPTER 16

Additivity and Nonadditivity

In this brief chapter we establish the surprising fact that the
outer measure function m* is additive over the union of two disjoint
sets provided that one of them is measurable. We will also give some
other results concerning the additivity and nonadditivity propertics
of m*. In addition, we will show that if a set is known to be contained
in a measurable set with finite measure, then the Carathéodory con-
dition can be replaced by a single test, and relate this result with the
notion of “inner measure”.

16.1 THEOREM. Let E be a Lebesgue measurable subset of RP
and let F be any subset of RP. Then:
(a) m*(EUF)+m*(ENF)=m(E)+m*(F);
(b) if ENF =0, then m*(EUF) =m(E) { m*(I);
(c) if m(E) < +oo and E C F, then we have m*(I' 1)
m*(F) — m(E).
PROOF. Since E € L, it follows from the Carnthéodory condi
tion that m*(A) = m*(ANE) + m*(A — I5) for all A C R" 11 we
take A := E U F, we obtain

m*(EUF) =m* (KU F)ar) o m* (ko) 1)
m(E) + m* (1),

161
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15.5 COROLLARY. The following statements are equivalent:
(a) The set E C RP is Lebesgue measurable;
(b) there exists a Gs-set H with E C H and m* (H-E)=0;
(c) there exist a Gs-set H and a Lebesgue null set Z such
that ECH,ZCH,and E=H - Z.
We leave it as an exercise to write out the details of the proof.

APPROXIMATION BY CLOSED SETS

We now show that Lebesgue measurable sets are those sets that
can be well approximated from inside by closed sets.

15.6 THEOREM. A set E C RP is Lebesgue measurable if and
only if for each € > 0 there exists a closed set F with F C E and
m*(E - F) <e.

PROOF. If E is measurable, then its complement E° is also mea-
surable. By Theorem 15.3 there exists an open set G with E° C G
and m(G — E°) < e. Now let F := G° so that F is closed, F' C E
and E—F = ENG = G — E¢, whence m(E — F) =m(G — E°) <e.

Conversely, for each n € N there is a closed set F, C E with
m*(E — F,) < 1/n, and we let K := |J;°] F. Then K is a Fy-set
(and is therefore Lebesgue measurable) and, since F, C K, we have
I~ K C I~ F,, so that m*(E — K) < m*(E — F,,) < 1/n for all
n. Therefore m*(E — K) = 0 which implies that Z := E — K is a
measurable set. Therefore F = K U Z is measurable. Q.E.D.

15.7 COROLLARY. If E C RP is Lebesgue measurable, then for
any € > 0 there exists a closed set F C E with m(E) < m(F) +e¢.
Therefore, we have

m(E) = sup{m(F) : F closed, F C E}.

PROOF. The set F in the theorem is measurable and F' C E;
hence m(E) = m*(ENF)+m*(E — F) <m(F) t+e. Q.E.D.

The next corollary characterizes measurability in terms of the
npproximation by F,-sets from inside.
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15.8 COROLLARY. The following statements are equivalent:
(a) The set E C RP is Lebesgue measurable;
(b) there exists an F,-set K with K C I< and m*(E-K)=0;
(c) there exist an F,-set K and a Lebesgue null set Z such
that KCE,ZCE,and E=KUZ.

We leave it as an exercise to write out the details of the proof.
APPROXIMATION BY COMPACT SETS

If E is a Lebesgue measurable set. with (/) < 100, then we
can approximate it from within by compact sets, and conversely. We
recall that a compact set always has finite Lebesgue measure.

15.9 THEOREM. A set 5 C R” with m*(I4) < | oo is Lebesgue
measurable if and only if, for every € > 0 there exists a compact set
C with C CE and m*(E - C) <e.

PROOF. If E is measurable and n € N, let [, be the set defined
by E, := En{z : ||z|]| < n}. Since the sequence (E,) increases to
E, it follows that the numerical sequence (m(Ey)) also increases to
m(E) < +00, so there is an ng such that m(E) < m(E,,) +¢€/2. By
Theorem 15.6 there is a closed set C with C C E,, and m(Ey,, —C) <
€/2. Since E is the union of the disjoint sets £ — E,, and E,, it
follows that

m(E) = m(E — Eny) + m(En,)

and since m(E) < +o0, that
m(E — Ep,) = m(E) —m(E,,) < /2.

In addition, E — C is the union of the disjoint sets 11, and
En, — C. Therefore

m(E = C) = m(F — I5,,) | m(l,, (')« o

Since C C E,, is closed and bounded, it s compnet in n
Conversely, suppose that for every n¢ N there na compact noel,

C, with C, C E and m*(ls — C),) « 1/n 1 we not ¢ l]".l 'y,
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12.1 to be open. Thus there exists a sequence (I;) of open cells
covering the set A such that

+oo
D U(Ix) S m*(A) +e.
k=1

If we let G := U::; Ik, then G is open and, by the countable subad-
ditivity of m* and Theorem 12.5, we have that

+o0 +00
m(G) <3 m*(Ix) = Y_I(Ix) < m*(A) +e.
k=1 k=1

Equation (15.1) now follows from the definition of the infimum.
(b) For each n € N, let G, be an open set such that A C

G, and m(G,) < m*(A) + 1/n. Now let H := ()}° Gy, so that
AC H C G, and m*(A) < m(H) < m*(A)+ 1/n for all n € N.
Therefore m*(A) = m(H), as asserted. Q.E.D.

15.2 COROLLARY. Every Lebesgue null set is a subset of a Borel
null set.

PROOF. If Z is a Lebesgue null set, there is a Gs-set H such that
7 C H and () — 0. But H is a Borel set. Q.E.D.

Unfortunately, in Lemma 15.1(b), the difference H — A need not
be a “small” set. In fact, it will be seen in Corollary 15.5 that the set
A is Lebesgue measurable if and only if the set H — A is a null set.

15.3 THEOREM. A set E C RP is Lebesgue measurable if and
only if for every € > 0 there exists an open set G with E C G and
m*(G - FE) <e.

PROOF. We first assume that E is measurable and that m(E) <
+00. Then, by Lemma 15.1(a), there exists an open set G such that
E C G and m(G) < m(E) + €. Since E is measurable and E C G,
we have

m(G) = m(GN E) + m(G — E) = m(E) + m(G — E).
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Since m(E) < +o0, we have
m(G — E) = m(G) —m(FE) <e.

If m(E) = 400, let Ey := EN{z : ||z|| <1} and, if n > 2, let
E,=En{z:n-1<|z|| <n}. Forn € N, let ;, be an open
t oo

set with E, C G, and m(G, — E,,) <¢e/2". If we let ' U,." Gn,
then G is open, E C G, and

Therefore, from the countable subadditivity of 1n*, we have

| oo

_fm
m(G — E) <Y m(Gh — I) < e e
n=1 n=1

Conversely, suppose that for every n € N there exists an open
set G,, D E such that m*(G, — E) < 1/n. Let H := !>} Gy, so that
H is a Gs-set (and hence is measurable). Moreover, since H C G,,
we have H — E C G,, — FE and hence

0<m*(H —E) <m*(Gn—E) < 1/n

for all n € N. Therefore m*(H — E) = 0, which implies that Z :=
H — E is a measurable set. Therefore, E = H — Z is a measurable

set. Q.E.D.

15.4 COROLLARY. If E C RP is measurable, then for any ¢ - ()
there exists an open set G D E with m(G) < m(l5) | «. Therefore,
we have

m(E) = inf{m(G) : G open, « Oy,

PROOF. Indeed, from Theorem 15,3, we have m(¢)  m(17) |
m(G — E) <m(E) +e. QN

The next result is concerned with approximation of a net by o
Gs-set from the outside. It is a useful charnctorization ol Lebespue
measurability.
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for all A C RP. Therefore z @ F is also Lebesgue measurable and,
from Theorem 12.6, it has Lebesgue measure equal to

m*(z ® E) = m*(E) = m(E). Q.E.D.

NON-BOREL SETS

We now return to the question of whether there exists a Lebesgue
measurable set that is not a Borel set. We will state the result for-
mally in the case that p = 1, but give only an outline of the argument,
which is based on cardinal numbers. A reader not familiar with car-
dinal numbers will do well to accept the validity of the assertion on
faith until Chapter 17, where a more “constructive” proof is given.

14.8 THEOREM. In the space R there exist Lebesgue measur-
able sets that are not Borel sets.

SKETCH OF PROOF. We first notice that there is a countable
number of open cells with rational endpoints; that is, the cardinality
of the collection of all of these “rational cells” is equal to the cardinal
number Rg. It is an exercise to show that B is the smallest o-algebra
containing all of these “rational cells”. Therefore, it follows that the
cardinal number of the set B is

(NU)R0 = ¢,

where ¢ denotes the cardinality of the set R of all real numbers. On
the other hand, it was seen in Corollary 14.6 that £ contains a null
set with uncountably many elements; in fact, the Cantor set can be
seen to have c¢ elements. Since an arbitrary subset of a null set is a
Lebesgue measurable set, then £ contains at least 2¢ sets. But since
R has only 2° subsets, it follows that the cardinality card(L) = 2°.
Therefore, we have

card(B) = ¢ < 2¢ = card(L),

whence B is properly contained in L.

CHAPTER 15

Approzimation of Measurable Sets

We now show that arbitrary Lebesgue measurable sets are pre
cisely those sets that can be approximated by open and closed sets.
In fact, it would be possible to take these characterizations as the def
inition of measurability. However, we have chosen not to do so, since
in abstract measure spaces there is no notion of “open” or “closed”,
so the Carathéodory condition is the only method that is possible of
determining measurability.

APPROXIMATION BY OPEN SETS

First we will show that every subset of RP can be enclosed in a
Gs-set with the same outer measure.

15.1 LEMMA. (a) If A C RP and € > 0, then there exists an
open set G C RP such that A C G and m(G) < m*(A) | «. Hence

(15.1) m*(A) = inf{m(G) : A C ¢, (. open).

(b) If A C RP, then there is a Gyset H osuch that A C 1 onnd
m*(A) = m(H).

PROOF. (a) We may assume that m*(A) < f oo (Why?) 1t wan

noted in Remark 12.2(b) that we may roquive the colln in Definition
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14.4 DEFINITION. A subset E C RP with m*(E) = 0 is called
a (Lebesgue) null set.

Of course, the empty set @ is a null set, as is a set consisting
of a finite number of points. Indeed, any countable subset Z :=
{p1,p2,...} of R is a null set; for, given any € > 0, let the point
p1 be enclosed in a cell I; with m(I}) < €/2, let p, be enclosed in
a cell Iy with m(I3) < €/2%,..., let p, be enclosed in a cell I, with
m(I,) < /2", .... Hence, it follows from the countable subadditivity
of m (which is a consequence of this same property of m*) that

+o00 +o0
0<m(2) <Y m,) <Y e/2" =e.
n=1 n=1

We now show that any null set, and hence any subset of a null set, is
a Lebesgue measurable set.

14.5 THEOREM. If Z C RP is a null set, then Z is a Lebesgue
measurable set and hence m(Z) = 0. Moreover, any subset of Z is
Lebesgue measurable and a null set.

PROOF. Let A C RP be arbitrary. Then since Z 2 AN Z and
A D AN ZC, it follows from the monotone property of m* that

m*(A) — m*(Z) + m*(A) >m* (AN Z)+m* (AN Z°).

Therefore, it is a consequence of Lemma 13.4 that Z is Lebesgue
measurable; hence m(Z) = m*(Z) = 0.

If W C Z, then 0 < m*(W) < m*(Z) = 0, whence W is also a
null set, and therefore is Lebesgue measurable. Q.E.D.

One sometimes says that Lebesgue measure is complete, mean-
ing that any subset of a Lebesgue null set is measurable, and hence
has Lebesgue measure equal to 0.

Normally, we think of null sets as not having many points; how-
ever, that is not necessarily the case, as we will now show.

14.6 COROLLARY. There are Lebesgue null subsets of RP that
contain uncountably many points.
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PROOF. We will prove the assertion for the case p = 1, and leave
it to the reader to extend the result to an arbitrary value of p.

We note that the familiar Cantor set [see pp. 351353, Introduc-
tion to Real Analysis, Second edition, John Wiley & Sons, 1992, by
R. G. Bartle and D. R. Sherbert] is a closed subset of R. urther,
the argument presented there shows that, given € > 0, the Cantor
set can be enclosed in the union of countably many cells whose total
length is less than . Therefore, the Cantor set is a Lebesgue null set.
However, it was also seen in the reference cited that the Cantor set
contains uncountably many points. Q.E.D.

TRANSLATION INVARIANCE

The next result can be summarized by saying “Lebesgue measure
is translation invariant”.

14.7 THEOREM. If E C RP is Lebesgue measurable and x €
RP, then z ® E is Lebesgue measurable and

m(z ® E) = m(E).

PROOF. If A and B are arbitrary subsets of RP and if z € RP,
then it is an exercise to show that y € (2 ® A) N B if and only if
y € 2® (AN [(—2z) & B]). Hence we have

(z@ A)NB=z& (AN|[(-2)® B)).

Similarly, one shows that z® B¢ = (z@® B)°. Now let x, z be related by

x = —2z; then it follows from the invariance of m* under translation
that

(14.1) m*((z® A)NB) — m* (A (x ) 1})).

Now let E € £ and use (14.1) with 3 IS and I3 I to obtain

m*(A)=m*'(z®dA) - m* ((z0A)OVE) 1 m* ((« b A)yr 1)
=m*(AN(z® L)) 1 m* (A0 (@ 1))
=m* (AN(z® L)) t m* (A0 (e h 1))
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the Well-ordering Property of N.) We now let

Go := | J{C(2,1/n:) : 2 € G Q7}

so that Gy is a union of a countable collection of open cubes. There-
fore Gy is open and Gy C G.

We now show that Gy = G. Indeed, if y € G is arbitrary, then
since G is open, there exists a cube C(y,1/n,) with center y such
that C(y,1/ny) C G. Now consider the cube C(y,1/2n,) whose side
length is half that of C(y,1/n,). Since Q is dense in R, then the set
Q? is dense in RP, and there are infinitely many “rational” points in
GNC(y,1/2ny). Let w be the first such rational point, according to
the enumeration of Q” selected above. Since w € G N C(w, 1/2ny),
it is an exercise to show that y € C(w,1/2n,) C C(w,1/n,,) C Gy.

We conclude that G = Gy, so that G is the union of a countable
collection of open cubes, which are open cells. Q.E.D.

14.2 'THEOREM. Every open and every closed subset of RP
is Lebesgue measurable.

PROOF. It follows from Lemma 14.1 and the fact that the collec-
tion £ possesses property 13.1(iii), that every open set belongs to L.
Since a closed subset of RP is (by definition) the complement of an
open set in R every closed set is also Lebesgue measurable. Q.E.D.

The intersection of a sequence (or countable collection) of open
sets is often called a Gs-set. It is well known that such a set is not
necessarily an open set (give an example!); however, it is a measur-
able set, since the intersection of a sequence of sets in a o-algebra
also belongs to the o-algebra. Similarly, the union of a sequence (or
countable collection) of closed sets is often called an Fj,-set. Such a
set is not necessarily a closed set (example, please), but it is a mea-
surable set. Further, a set that is the union of a sequence of Gs-sets is
often called a Gg,-set; it is always a measurable set. Also, a set that
is the intersection of a sequence of F,-sets is often called an F,4-set;
it is also measurable. If we continue in this way, we can define sets
that are

Gsos, Foso, Gsosey Fosos,
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sets. All the sets that are obtained in this way are Lebesgue measur-
able sets, so it is very difficult even to imagine a subset of RP that
is not Lebesgue measurable. However, we will give an example in
Chapter 17 of a subset of RP that is not Lebesgue measurable.

BOREL SETS

In addition to the o-algebra £ of Lebesgue measurable sets, it
is often convenient to work with a somewhat smaller o-algebra of
subsets of RP.

14.3 DEFINITION. The smallest a-algebra of subsets of RP
that contains all of the open sets is called the Borel o algebra and
will be denoted by B. Any set in B is called a Borel set.

A word needs to be said about. the existence of the “smallest”
o-algebra containing the open sets. As we have noted in Remark
(e) after Definition 13.1, the intersection of two o-algebras is again
a o-algebra; moreover, it is an exercise to show that the intersection
of an arbitrary collection of o-algebras is a o-algebra. Consequently,
it follows from this observation that the intersection of all o-algebras
containing the open sets in R” is a o-algebra that contains the open
sets; hence it is precisely the collection of Borel sets.

In addition to all open sets, and all closed sets, the collection B
must also contain all Gs-, all F,-, all Gs,-, all F,s-, ... sets. On the
other hand, since L is a o-algebra containing all open sets, it follows
that we must have

BCL.

The question naturally arises as to whether we might, have oquality
in this inclusion; that is, whether every Lebesgue mensurablo ot is n
Borel set. The answer is: No. We will sketch a proof of this nsortion
at the end of this chapter.

NULL SETS

We now introduce a class of sets that nre mnndl (nl lonst from
the point of view of measure theory) but which often play n very
important role.
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Since m is countably additive, then

+00 +00
(G#)-+(32)
k=1 k=1
+00 n
=" m(Ax) = lim (mek)> .
k=1 k=1

By Theorem 13.9, we have m(Ax) = m(Ex) — m(Eg-1) for k>1,so0
the finite sum telescopes and

Y- m(Ax) = m(En)-
k=1

Hence equation (13.8) is proved.

(b) Let Ey := Fy —Fi fork € N, so that (Ej) is an increasing
sequence of measurable sets. If we apply part (a) and Theorem 13.9,
we infer that

o0
m ( U ICk) = lim m(E,) = ,}m[m(Fl) —m(Fy)]
k-1

m(Fy) — l_i_l}gom(Fn).

But since ;25 Ex = I1 — Nr2] Fr, it follows from Theorem 13.9

that
+00 oo
m(UEk) =m(F1)—m(ﬂFk).
k=1 k=1

We now combine the last two relations to obtain (13.9). Q.E.D.

CHAPTER 14

Ezamples of Measurable Sets

We have established, in the preceding chapter, that there exists
a o-algebra L of subsets, called the Lebesgue measurable sets,
containing all cells in R?, and on which there is a measure function,
called Lebesgue measure, that extends to the sets in L the notion
of “volume”. It was asserted that the set £ of measurable sets is
a very large one, but this assertion has not yet been proved. The
purpose of this chapter is to give some indications about what sets
belong to this collection. We will show that all of the familiar sets in
analysis are Lebesgue measurable.

14.1 LEMMA. Every open subset of RP is the union of a count-
able collection of open cells.

PROOF. Let Q denote the set of all rational numbers in It and
let QP := Q x ... x Q denote the collection of those points in R” all
of whose coordinates are rational numbers. It is well known that Q"
is a countable set; we let (2, : n € N) denote an enumeration of Q"

If G is an arbitrary open set in R”, for ench = ¢ (/1) Q" et
C(z,1/n;) be the open cube (i.c., the coll all of whono niden nre equnl)
with center z and side length 1/n,, whoere n, i the snnllent nntural
number such that C(z,1/n;) is contained in ¢ (We have junt e
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larger collection of sets, and we will soon see that the collection L is
a very large collection of sets. It is conceivable, however, that there
may be another measure defined on L that agrees with [ on cells. We
now show that this is not the case.

13.8 THEOREM. If p is a measure defined on L that is such
that pu(I) = I(I) for all open cells I C RP, then p = m.

pROOF. For n € N, let I, be the open cell
I, == (-n,n) X ... x (—n,n).

Let E € L be any set with E C I, and let (Jx) be a sequence of open
cells such that E C |JF2] Jk. Since p is a measure and p(Jk) = U(Jk)
for all k € N, we have

+o00 +00 +00
u(E) < p ( U Jk) <> uI) = > U
k=1 k=1 k=1

Therefore, we have p(E) < m*(E) = m(E) for all measurable sets
E C I,,. Since u and m are additive, then

w(B) + (I — E) = pw(In) = m(ln) = m(E) + m(I, — E).
Since all of these terms are finite and p(E) < m(E) and p(In — E) <
m(I, — E), it follows that u(E) = m(E) for all measurable sets
E C I,.

Now an arbitrary measurable set E can be written as the union
of a disjoint sequence (E,) of sets, defined by

E, = Enl, E, :=Eﬂ(In—-In_1) for n>1.

Since p(E,) = m(E,) for all n € N, it follows that

+o00 +o00
W(E) =Y p(En) = D m(En) = m(E).
n=1 n=1

‘I'mis ;o and m agree on all measurable sets. Q.E.D.
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We conclude this chapter with two useful results that are simple

properties of the positivity and the countable additivity of Lebesgue
measure.

13.9 THEOREM. IfF and F are Lebesgue measurable sets and
if E C F, then m(E) < m(F). If, in addition, m(l?) < |oo, then
m(F — E) = m(F) — m(E).

PROOF. Since m is additive, it is immediate from the fact that
F=EU(F—-E)and EN(F - E) = 0 that

m(F) =m(E) + m(F — ).

Since m(F — E) > 0, we have m(I") > m(F). 1 m(1l5) < | oo, then
we can subtract m(E) from both sides of the above equation. Q.E.D.

13.10 THEOREM. (a) If (Kx) is an increasing sequence of
measurable sets, then

+o00
(13.8) m ( U Ek) = lim m(Ej).

k=1

(b) If (Fy) is a decreasing sequence of Lebesgue measurable sets
and if m(Fy) < +oo, then

+o0
(13.9) m ( N Fk) = lim m(F).

k=1

PROOF. (a) If m(Ex) = +oo for some k € N, then both sides of
(13.8) are equal to +oo. Hence we may suppose that m(ly) < oo
for all k € N. Now let Ay :— Iy and Ay 2 iy Iy for k- |
Then (Ayx) is a disjoint sequence of measurablo sots wuch that

| o0

k | o
Ey = U Aj and U 1N LJ A
j=1 A

A1 |
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which implies that

+00
(13.5) m*(A) 2 Y m* (AN Ey) + m" (AN EY).
k=1
On the other hand, it follows from the countable subadditivity of m*
that

+o0o +00
(13.6) m'(ANE)=m' (U AN Ek) <Y m*(ANEy).

k=1 k=1
Therefore, we have
m*(A) >m*(ANE)+ m*(AN E°),

which (in view of Lemma 13.4) implies that E € L, so that L is a
o-algebra. In addition, if we take A = E in (13.5) and (13.6), we
obtain

+00
m*(E) =Y _ m*(Eg),
k=1
which shows that m* is countably additive on L. Q.E.D.

13.6  DErFINITION. If m* is the outer measure defined in Def-
inition 12.1, then the o-algebra £ of subsets of RP that satisfy the
Carathéodory Condition 13.3 is called the Lebesgue o-algebra of
RP. A set E € L is called a Lebesgue measurable subset of R?,
or briefly, a measurable subset of RP. The restriction m of m* to
L is called Lebesgue measure on RP.

Since m is the restriction of m* to the o-algebra L, we have
m(E) = m*(E) for all E € L. Ordinarily, when we know that a set
E is measurable, we will write m(E) instead of m*(E).

The next result assures that cells in RP are measurable sets and
that their Lebesgue measure coincides with their volume.

13.7 THEOREM. If I is a cell in R, then I is measurable, and
henee m(I) = I(I).
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PROOF. We will give the proof for an open cell, leaving to the
reader to extend the conclusion to an arbitrary cell in RP. It was
seen in Lemma 13.4 that it suffices to show that if A C RP is such
that m*(A) < +o0, then -

m*(A) >m*(ANI)+m*'(A-1).

Let n € N and let I, := {z € I : dist(z, [) > 1 /n}, so that I, C .
Mo.reover, since I — I,, is contained in the union of 2p cells each of
which has one side with length 1/n, then m*(/ —1,,) — 0 asn — |oo.

Note that A D (ANI,)U (A1) and distq(AN L, A1) > 1/n.
Therefore, it follows from Theorem 12.4 that

m*(A) > m* ((ANL)U(A-1))
= m*(AN L) + m*(A - I).

(13.7)

On the other hand, since
ANI=(ANnL)U (AN -1,)),

it follows from the subadditivity and the monotone character of m*
that

m*(ANL) <m*(AnI) <m*(ANI,)+m*(I - I).
Therefore, we have
m*(ANI)= "ljllgom‘(A NI,).
Hence, taking the limit in (13.7), we have
m*(A) >m*(ANnIl) 1 m*(A 1),
which shows that I is a measurable set, by Lonnmn 134 QD

We have been able to obtain a measure defined on a o algebin £
of sets that agrees with the volume function [, originally defined only
for cells. Consequently, we have been succennful i extending [ to a
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PROOF. Indeed, since AN E and AN E° are disjoint and have
union A, it follows from Theorem 12.3(iii) that we always have the
inequality

m*(A) < m*(AN E)+ m*(AN E°).

Hence, if (13.4) is satisfied, then so is (13.3). Finally, we note that
(13.4) is trivial in case m*(A) = +o0, so it is only necessary to treat
the case m*(A) < +o0. Q.E.D.

We will now obtain Carathéodory’s theorem.

13.5 THEOREM. (Carathéodory) Letm* be the outer measure
defined in Definition 12.1. Then the set L of all subsets of R” that
satisfy the Carathéodory Condition 13.3 is a o-algebra of subsets of
RP. Moreover, the restriction of m* to L is a measure on L.

PROOF. It is clear that @ satisfies (13.3), and that if E satisfies
(13.3), then so does its complement E°. Hence the family of sets that
satisfy the Carathéodory condition satisfies properties (i) and (ii) of
Definition 13.1.

We now show that if E and F satisfy (13.3), then so does ENF.
For, since I € L, then

m*(A) = m* (AN E)+m*(ANE®)
for any A C RP. Since I’ € L we have
m*(ANE) =m*'(ANENF)+m* (AN ENF°),
whence it follows that
m*(A) =m*(ANENF)+m* (AN EN F°) + m*(AN E°).
But since E € L, we also have

m*(AN(ENF)°)
=m*(AN(ENF)*NE)+m*(AN(ENF)*NE°)
=m*(ANF°N E) + m* (AN E°).
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It therefore follows that
m*(A)=m*(AN(ENF))+m*' (AN (ENF)°)

for all sets A. Consequently, E N F' belongs to L.

Since £ contains the complements of sets in L, it follows from
De Morgan’s Laws that if £, F € L, then YU I € L. Morcover, if
EN F = 0, then it follows from the fact that [9 satislies (13.3) with
A replaced by AN (FEUF) and F = I'N 15 that

m*(AN(EUF)) =m*(AN(EUF)NE) | m*(An (L0 )0 1)
=m*(ANE) t m*' (AN ).

By induction we conclude that if /4, ... [, belong to £ and are
pairwise disjoint, then F; U...U F, belongs to £ and

m*(AN(E1U...UE,)) =m* (AN E) +...+ m* (AN E,)

for all A C RP.

We now show that £ is a o-algebra and that m* is countably
additive on £. To do this, let (E,,) be a pairwise disjoint sequence in
L and let E :=[J;25 Ex. We know that F, := |J;_, Ex belongs to £
for all n € N. Moreover, if A C RP, then

m*(A) =m*(ANF,) + m* (AN Fy)

=m* ( U AN Ek) +m*(ANL))

k=1
n
- Zm'(A NE) L m*(AOE).
k=1

Since F, C E, then ANES D AN E for all n ¢ N, no that

m*(A) > Zm’(/\ Ol L mt (AR,

ko1
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The main theorem in this chapter is due to the well-known Greco-
terman mathematician Constantin Carathéodory. We will state this
result for the outer measure m* introduced in Chapter 12, although
his theorem remains true for any function satisfying the properties
stated in Theorem 12.3.
In order to simplify the statement of Carathéodory’s theorem,
we introduce some terminology that is often useful.

13.1 DEFINITION. Let X be an arbitrary set. Then a family
%) of subsets of X is said to be a o-algebra in X if the following
conditions are satisfied:
(i) 0 and X belong to ¥;
(ii) if E € ¥, then the complement E° = X — E belongs to ¥;
(iii) if (En) is a sequence of sets in ¥, then the union Ut En
belongs to L.

REMARKS. (a) If ¥ is a o-algebra of subsets of X, then the

intersection of a sequence of sets in ¥ also belongs to X.

(b) If X is any set, then ¥; := {0, X} is a (rather trivial)
example of a o-algebra of subsets of X.

(¢) If X is any set and E is a subset of X, then ¥g :=
{0, B, 1, X } is a o-algebra of subsets of X.

(d) If X is any set, then Y3 := {all subsets of X} is a o-
algebra of subsets of X.

(e) If X is a set and ¥; and ¥, are o-algebras of X, then

¥ N g (= the collection of all subsets of X that belong to both ¥1
and ¥) is also a o-algebra of subsets of X.

13.2 DEFINITION. Let X be a set and let ¥ be a o-algebra of
subsets of X. Then an extended real-valued function n defined on ¥
is said to be a measure on ¥ in case it satisfies:

(i) p@® =0
(i) 0 < u(E) < +oo for all E € ¥;
(i) if (Ey) is a sequence of sets in ¥ that are pairwise disjoint,
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then we have the equation
+o00 +o00

(13.2) K ( U En) = ZI‘(En)-
n=1 n=1

REMARKS. (a) Since u(E) > 0, the series on the right side of
equation (13.2) is either absolutely convergent, or it is properly di-
vergent to +oo.

(b) If X = N and ¥ = {all subsets of X}, then define (1) to
be the number of elements in E if E is a finite set, and p(19) : oo
if E is an infinite set. Then g is a measure on Y and is called the
counting measure on N.

We now introduce the “test for measurability” of a set £ C R”.

13.3 DEFINITION. Let m* be the outer measure defined on
all subsets of RP. A set E C RP is said to satisfy the Carathéodory
condition in case

(13.3) m*(A) = m*(AN E) + m*(AN E°)

for all A C RP. The collection of all such sets will be denoted by L.

We note that the condition (13.3) can also be written in the form
m*(A) =m*(ANE)+m*(A-E).

Intuitively, a set E satisfies the Carathéodory condition if [ and its
complement E° split every set A “additively”. The sets that sntisfy
the condition (13.3) are precisely the desired “mensurnble nete™. The
next lemma shows that the task of showing that n wet 15 wntinflen
(13.3) can be simplified somewhat.

13.4 LEMMA. A set I5 satisties the Cnrathdodory condition if
and only if, for each set A with m*(A) < | oo, then

(13.4) m*(A) >m*(ANE) | m* (AN



138  The Elements of Lebesgue Measure

Since every covering (Ji) of the set z @ E by cells can be obtained
by translating a covering (Kx) of E (how?), it also follows that we
have m*(E) < m*(z ® E), whence m*(E) = m*(z @ E). We leave
the precise details as an exercise. Q.E.D.

CHAPTER 13

Measurable Sets

In the preceding chapter we defined the outer measure m* (19) of
an arbitrary subset E of R?. While the function m* has the distinct
advantage of being defined for every subset of R”, it is not always
additive over disjoint subsets; that is, it does not always satisfy

m*(AU B) = m*(A) + m*(B)

when A and B are sets such that AN B = 0.

In this chapter we will prove that, by restricting m* to a certain
family £ of subsets of RP, we obtain a function that not only is
additive over disjoint sets, but is even countably additive in the sense
that if (E,) is a sequence of sets in £ that are pairwise disjoint (i.c.,
E, N E,, = 0 for n # m), then the union E := U:o‘; 15, belongs Lo
L and

400

(13.1) m*(E) =Y m*(Fy).

nl

This countable additivity property is a very desirable one; in fnet, it
is this property that makes many of the propertion of the Lebengue
theory of integration work nicely.
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If € > 0 is given, let (L,) be a covering of AU B such that

f I(I,) < m*(AUB) +e.

n=1

As was noted in Remark 12.2(d), we may assume that the cells (I,,)
have diameter less than 6. In this case, no cell I, can contain both
points in A and points in B, for then we would have dist(A, B) < 6,
contrary to the hypothesis. Hence we may divide the cells {I,} into
three classes: (i) the cells {J;} that contain points in A, (ii) the cells
{Kx} that contain points in B, and (iii) the cells {Hx} that do not
contain points in either A or in B. Therefore, we have

m*(A) <Y U(J;) and  m*(B)< Y UKy),
J k

from which it follows that
m*(4) +m*(B) < S U(J;) + S UK + 3 (H)
j k h

<Y UI,) <m*(AUB) +e.

Therefore, we have mn*(A) + m*(B) <m*(AUB) +¢. Sincee >0 is
arbitrary, we infer that m*(A) + m*(B) < m*(AU B), as was to be
shown. Q.E.D.

It is conceivable that the value m* gives to a cell might be differ-
ent from the p-dimensional volume of the cell; however, we will now
show that such an unfortunate situation cannot occur.

12.5 THEOREM. If I is any cell in R?, then m*(I) = I(I).

PROOF. Since the sequence (I,0,0,...) is a covering of I, it fol-
lows that m*(I) < I(I)4+0+0+...={(I). To establish the opposite
inequality, let € > 0 be given and let (I;) be a covering of I by open
cells such that

+00o
S UI) <m*(I) +e.
k=1
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If I is a closed cell, let J := I; otherwise, let J be a closed cell such
that J C I and I(I) — & < I(J). By the Heine Borel Theorem there
is an m € N such that J C ], Ix.

We now divide the space R? into a finite number of closed inter-
vals by extending the (p — 1)-dimensional hyperplanes that contain
a face of one of the cells Iy,..., I, and of J. Let Ky,..., K, be
the distinct closed cells into which the cells 1, ,...,1,, are divided
by these hyperplanes; further, let Jy,...,.J, be the closed cells into
which J is divided. Therefore, we have

r

UJ) =D UJ5) < S U(Ky)
j=1 k-1
< (Ix) <m*(1) | e.
k=1
Consequently, [(I) < U(J) + & <m*(I) + 2. Since € > 0 is arbitrary,
we deduce that I(I) < m*(I). Therefore it follows that I(I) — m*(I),
as claimed. Q.E.D.

TRANSLATION INVARIANCE

We noted at the end of Chapter 11 that the volume of a cell is
not changed by a translation. We now show that the analogous result
holds for the outer measure of an arbitrary subset of RP.

12.6 THEOREM. IfE C RP and x € RP, then we have
m*(z ® E) = m*(E).

PROOF. If the sequence (Iy) of cells is a covering for 14, then the
sequence (z @ Ii) of z-translates is a covering of (15 by colls. Sinee
we have 3, [(Ix) = 3, Uz ® Ii), it follows that

| o0
m*(x® 1) <inf { XI(.:-H» Iy) }
ko
| o0
i..r{xt(m} m (1)

k-1
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(c) If desired, we may restrict the cells (/) to be half-open cells,
having either form.

(d) If § > 0 is given, we may restrict the cells (/x) to have
diameter less than 6. [Recall that if A C RP, then the diameter of
A is defined to be

diam(A) := sup{||lz — || : z,y € A}.

Hence, if z,y € A, then we have ||z —y|| < diam(A).] To see that this
is true, note that any half-open cell can be obtained as the union of
a finite collection of pairwise disjoint half-open cells with diameters
less than 6. For example, one can successively bisect the sides of the
cell to obtain cells with diameter less than the preassigned 6.

We shall now establish the basic properties of the outer measure
function m*.

12.3 THEOREM. The outer measure function m* defined in
Definition 12.1 satisfies:
(i) 0 <m*(E) < +oo for all EC RP, and m*(0) = 0;
(ii) if E C F, then m*(E) < m*(F);
(i) if (Ex) is a sequence of subsets of R, then
+o00 +00
m* ( U Ek) < Zm‘(Ek).
k=1 k=1
PROOF. (i) The first property has already been noted. If we
take Iy =0 forallke N,then D C [U L U...,so
0<m*'@) <0+0+...=0.
Therefore (i) is proved.
(ii) If (Ix) is a sequence of cells with F' C Ui Ik, then also
E C U{S Ik. Therefore m*(E) < m*(F), proving (ii).
(i) It suffices to prove the assertion in the case that m*(E,) <

+o0 for each n € N. (Why?) Let € > 0 and, for each n € N, choose
a sequence (I7), of cells such that

+00 +o00
E.C It and D UIR) <m*(En)+e/2"
k=1 k=1
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Since {I} : k,n € N} is a countable family of cells that cover the set
29 En, it follows from the definition of m* that

+o00 +00 +00 +00
m* ( U E) SR COED BP9
n=1 kn=1 n=1k=1
+o00 | 00
< ST (mt(En) +e/2%) - Y omt (k) 1 e
n=1 n 1

[Since m*(E) > 0 for any set E C R”, the change from a double
sum to an iterated sum is justified.] Now, since € > 0 is arbitrary,
property (iii) is proved. Q.15.D.

Property (iii) of Theorem 12.3 is referred to by saying that mn*
is countably subadditive on the collection of all subsets of R”. In
particular, it follows from (iii) that if A and B are disjoint subscts
(that is, if AN B = 0), then

m* (AU B) < m*(A) + m*(B).

Our intuitive feeling about volume is that equality should hold in this
relation. Unfortunately, it is not the case (as we will prove in a later
chapter) that equality holds for an arbitrary pair of disjoint subsets
of RP. However, we now show that this desired equality relation is
true in case the sets A and B are at a positive distance from each
other.

12.4 THEOREM. Let A and B be disjoint subscts of R” with
dist(A, B) := inf{||la — b|| : a € A,b € B} > 0. Then we have

m*(AU B) = m*(A) | m*(1}).

PROOF. We have already scen that it s alwayn the cane that
m*(AU B) < m*(A) + m*(B). Therofore (why?), i nutlicen to prove
the opposite inequality under the hypothesin that m* (A ) - oo
and 6 := dist(4, B) > 0.
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will enclose the set in the union of a countable collection of cells,
and then minimize the sum of the volumes of the cells by taking the
infimum over all such countable collections. (This process is rather
similar to the construction of the upper integral that is often done in
elementary calculus courses.) This “generalized volume” is useful for
many purposes and has the advantage that it is defined for all subsets
of RP. Unfortunately, it will be shown later that this generalized
volume is not sufficiently well-behaved on the collection of all subsets
of RP. However, when this generalized volume is restricted to a
suitable collection (to be denoted by L) of subsets of RP, it will be
seen to have some very satisfactory properties. In Chapter 4, this
collection £ will be shown to contain all of the subsets of RP that
arise in ordinary work. In particular, £ contains all open subsets
and all closed subsets of RP, and it contains all countable unions, all
countable intersections, and all complements of sets that belong to
the collection L.

12.1 DEFINITION. If E C RP, we define the outer measure
m*(E) of E to be

+o00
(12.1) m*(E) == inf {Zl([k)} ,

k=1

where the infimum is extended over all sequences (Ix) of cells in R?
that cover E in the sense that

+o0
(12.2) EC |
k=1

(1) We note that, since the entire set R” is contained in the
union of a sequence (I) of cells in R?, the collection of all sequences
that satisfy (12.2) is not empty. Therefore, the infimum appearing in
(12.1) is well-defined and it is evident that m*(E) > 0. We also note
that it is certainly possible to have m*(E) = +o0; for example, this
in the case when we take E = RP.
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(2) The terms I(I}) certainly satisfy 0 < I(/x) < oo for all k.
Hence, the series

+00
(12.3) > U
k=1

is either (i) absolutely convergent, in which case the value of its sum
does not depend on the order of summation, or (ii) the series (12.3)
is divergent (= convergent to +00), in which case we assign the value
+00 as its sum.

(8) Since the convergence or the divergence of (12.3) does not
depend on the order of the summands, it is equally appropriate to
think of (Ix) as being a countable family of cells rather than a sequence
of cells.

Before we proceed, we wish to make some further observations
about Definition 12.1 that will be important.

12.2 REMARKS. (a) We may restrict the cells (1) in Definition
12.1 to be closed cells if we wish to do so. Indeed, since I, C I, it is
trivial that if (12.2) holds, then we also have E C |J;=5 I, . Since, as
was noted in the preceding chapter, we have (1) = I(Ix), the value
of m*(E) is not affected by using the closures of the cells.

(b) We may also restrict the cells (Ix) to be open cells if we wish
to do so. Indeed, suppose that m*(E) < +oo and that (12.2) holds
for a sequence (Iy) of cells. If € > 0, then let (Ji) be a sequence of
open cells such that

I C Jy and I(Jk) < UTk) 1 /28

for k=1,2,.... Then we have

+o00 | oo | o
EC U Jeooand YUY <D U 1
k=1 kot A1
Hence it follows (why?) that the same vesult i obtained in (12.1) by

using open cells as using arbitrary cells.
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Hence the volume I(I) of a cell I in RP is equal to the volume I(I°)
of its interior, and also to the volume [(I™) of its closure.

We also note that the empty set @ can be considered to be an
open cell with equal endpoints. Consequently, the above definition of
the volume yields [(0) = 0.

Let I = I x ... x I, be an interval in R?; then we define the
p-dimensional volume [(I) of I to be the product

U(I1) = (L) ... U(Ip)

of the lengths of the p sides. This product is to be interpreted as
equaling 0 if at least one of the side lengths I(I}),...,l(Ip) is equal
to 0 (even though some of the lengths may equal +00). In addition,
this product equals +oo if all of the side lengths I(I}),...,l(Ip) are
different from 0 and at least one of them equals +oo.

TRANSLATION INVARIANCE

One thing worth noticing about the volume of cells in RP is
that it is independent of the “location” of the cells in the space, and
depends only on the lengths of the sides. We express this idea by
saying that the volume function is “translation invariant”. To clarify
this notion, we introduce the following definition.

11.1 DerINITION.  If A is a subset of RP and x is any vector
in R?, then the translation of A by z is defined to be the set

z®A:={r+a:a€ A}

It is easy to see that the translation of a cell I in RP is also a
cell; moreover, it is an exercise to show that (z®I)=I(I) for all
vectors z and cells I in the space RP.

CHAPTER 12

The Outer Measure

We wish to extend the notion of the volume of a set. in R” to sets
that are more general than cells or intervals. Of course, if a set I in
RP can be obtained as a disjoint union of a finite number of cells, it
is natural to define the volume of E to be the sum of the volumes of
the corresponding cells. However, such a set E may be decomposed
in many ways as the disjoint union of cells and it is not immediately
clear that different decompositions of E would always lead to the
same value for the volume of E. In addition, many — in fact, most
— sets cannot be obtained as a finite union of cells; the circular disk
D := {(z,y) € R? : 2* + y? < 1} is an important example of such
a set. It is possible to show that D can be obtained as the disjoint
union of a countable family of cells in R?; in fact, this can be done
in infinitely many ways. To define the 2-dimensional volume (that

is, the “area”) of D, we would surely need to use an infinite series
for each decomposition, and to show that different, decompositions of
D give the same 2-dimensional volume for 1. Fyven for as siimple a
figure as the disk D, this would not be an easy tink

Our approach in generalizing the notion of volimo to anarbitrary
subset of R? will be by a process of “ovorestimation” . Banieally, we
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a half-open cell (a,b] is the union of the sets (—oo,a] and (b, +00).
It can also be written as the union of a countable collection of pair-
wise disjoint half-open cells of the form (e, S;], where i € N and
o, B € R.

Cells are also often called intervals; however, the sets

(v) (=00,a):={z € R:z < a},
(vi) (—o00,a] :={z € R:z < a},
(vii) [b,+0):={z € R:b< z},
(viii) (b,+00) :={z € R:b< z},
(ix) (—00,+0):=R={z € R: —00 <z < +o0o},

are also called intervals but they are not called cells. The intervals
(v) and (vi) have the right endpoint a, and the intervals (vii) and
(viii) have the left endpoint b. The intervals (v) and (viii) are open
subsets of R; the intervals (vi) and (vii) are closed subsets of R. The
final interval (ix) is both open and closed in R.

The length of a cell in R with endpoints a < b is defined to be
equal to b — a. Thus all four of the cells

(a,b), (a, b, [a,b), (a,b]
have the same length. We will frequently write
l([a,b)) :==b—a.

If I is any cell with endpoints a < b, then the interior I° of I is the
open cell (a,b), and the closure I~ of [ is the closed cell [a,b]. Thus
if I is any cell with endpoints a < b, then the length of I is equal to
the lengths of its interior I° and of its closure I~; in symbols

I(I) = I(I°) = I(I7).

The length of any one of the intervals (v) — (ix) is taken to be +o0;
we write, for example,

l((—00,a]) = +oo.
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CELLS, CUBES, AND INTERVALS

If pe R?, p > 1, then a cell I in R is the Cartesian product of
p cells Iy, ..., I, in R; thus

I=1 x...x1I,.

An open cell in R? is the Cartesian product of p open cells in IE,
and a closed cell in RP is the Cartesian product of p closed cells in
R. An open cell in R? is an open set in R”, and a closed cell in R
is a closed subset of RP. We say that a cell I in R” is half-open if
it is the Cartesian product of cells Iy,..., [, in It all of which have
the (“southwest”) form [a,b), or all of which have the (“northeast”)
form (a,b]. It is an exercise to show that if [ and J are hall-open
cells in RP having the same form, then INJ, IV J, and I —.J arc the
unions of a finite number of pairwise disjoint half-open cells in R”.
Similarly, the complement 1€ := RP? — [ is the union of a countable
collection of pairwise disjoint half-open cells in RP.

A cube in RP is a cell all of whose sides have equal length.
Cubes may be open, closed, or half-open. An interval in RP is the
Cartesian product of p intervals in R. Thus a cell in R? is also an
interval in RP, but not conversely.

If I =1 x...x I is a cell in R?, then the p-dimensional
volume [(]) of I is defined to be the product of the lengths of the
sides of Iy,...,I,. Thus, if the endpoints of I; are a; < b; for j =
1,...,p, then the volume of I is given by

UI) = (b1 — a1)...(bp — ap),

As in the case of cells in R, if I — Iy x ... x I, is acoll in R" and
the endpoints of I; are a; < bj, then the intorior [ of [ in R" ix
the open cell

19 (ay, by) x ..o x (ay,,b,)

and the closure I~ of [ in R” is tho closod coll

I I(l|,h|| XKoo X |1l’,,'l',|
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A cell in R with endpoints a, b (where a < b) is a set. having one
of the following four forms:

@) (a,b) :={z € R:a <z <b},
(ii) [a,b] :=={xr € R:a <z <b},
(iii) (a,b) :={r € R:a <z <b},
(iv) [a,b):={z € R:a <z <b}.

A cell with the first form is called an open cell with endpoints a,b.
A cell having the second form is called a closed cell with endpoints
a,b. Cells having the third or fourth forms are called half-open or
half-closed cells. We note that if @ = b, then only the closed cell is
nonvoid.

An open cell in R is an open subset of I, and a closed cell is
a closed subset of R; both of these types of cells are often conve
nient to work with because they fit into the topological scheme of
R. A nonvoid half-open cell is neither open nor closed, so it does not,
have very much topological interest; however, hall open cells have the
advantage that the intersection, the union, or the diflerence of two
half-open cells (of the same kind) are either halt open cells, or the
union of two disjoint half-open cells. Moreover, the complement. of
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(b) If E€ Z, define p(E) = 0 in case E can be written as the union
E — G U H U K of three sets in Z such that the x-projection of G is
countable, the y-projection of H is countable, and the projection of K
on the line with equation y = x is countable. Otherwise, define
p(E) = +o. Now p is a measure on Z, and if p(E) = 0, then E is
contained in the union of a countable set of lines. Show that
p(A x B) = w(A) u(B) for all A, Be X; hence p is a product of p with
itself.

(c) Let E = {(x,»):x+y=0}; show that E€ Z. However,

p(E) = 0, whereas m(E) = +00.

The Elements of Lebesque Measure
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A function fon Z = X x Y to R is measurable if and only if each
section f, is Y-measurable. Moreover, fis integrable with respect to =
if and only if the series

z [ 15l av

is convergent, in which case

IRES i [, 1] = | [if] dv.

10.K. Let X and Y be the unit interval [0, 1] and let X and Y be the
Borel subsets of [0, 1]. Let u be Lebesgue measure on X and let v be
the counting measure on Y. If D = {(x, y) : x = y}, show that Disa
measurable subset of Z = X x Y, but that

f W(Dy) du(x) # f (DY) du(y).

Hence Lemma 10.8 may fail unless both of the factors are required to
be o-finite.

10.L. If Fis the characteristic function of the set D in the Exercise
10.K, show that Tonelli’s Theorem may fail unless both of the factors
are required to be o-finite.

10.M. Show that the example considered in Exercise 10.J demon-
strates that Toncelli's Theorem holds for arbitrary (Y, Y, v) when
(X, X, p)is the set N of natural numbers with the counting measure on
arbitrary subsets of V.

10.N. If a,,, = 0 for m, ne N, then

o 0
—

>3 am=3

m=1n=1

Ay (< +00).
1

iMs

10.0. Let a,, be defined for m, n € N by requiring that a,, = +1,

Apni1 = —l,and a,, =0if m # norm # n + 1. Show that
zzamnzoy Zzamnzly
m=1n=1 n=1m=1

so the hypothesis of integrability in Fubini’s Theorem cannot be
dropped.
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10.P. Let fbeintegrable on (X, X, ), let g be integrablcon (Y, Y, v),
and define 4 on Z by A(x, y) = f(x) g(y). If = isa product of  and v,
show that 4 is w-integrable and

Jonae = {[ra[f e

10.Q. Suppose that (X, X, ) and (Y, Y,») are o-finite, and let
E, Fbelongto X x Y. Ifv(E,) = v(F,)forallxc X, thenn(r) — =(F).

10.R. Let fand g be Lebesgue integrable functions on (R, B) to R.
From Exercise 10.H it follows that the function mapping (x, y) into
Sf(x — p)g(y) is measurable with respect to B x B. If A denotes
Lebesgue measure on B, use Tonelli’s Theorem and the fact that

f [f(x = p)| dM(x) = f [/(x)| dA(x)
R R

to show that the function 4 defined for x € R by

W) = [ = ) 80) )

is finite almost everywhere. Moreover,

f|h1dA< Ulf[d)«][flgld)«].

The function /4 defined above is called the convolution of fand g and is
usually denoted by f* g.

10.S. Let X = R, X be the o-algebra of all subscts of R and let j¢ be
defined by u(A4) = 0 if 4 is countable, and j(A) Foo il A s un-
countable. We shall construct distinct products of o with iself

(@) If Ee Z = X x X, define #(£) 0 in case £ can be written as
the union £ = G U H of two sets in Z such that the v-projection of ¢
is countable and the y-projection of /1 is countable.  Otherwine, define
m(E) = 4o00. Itis evident that o is a measure on Z . W ou(l) 0,
then E is contained in the union of a countable set of lmes i the planc,
If A, Be X, show that =(A x B) — j(A) (). Hence nona product
of p with itself.
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have finite integrals and

(10.9) J'xfd;J.=J'ZFdﬂ=J.ygdv.

In other symbols,

(10.10) fx Udev] = fzrdﬁ - J'Y [LF@] &.

PROOF. Since F is integrable with respect to =, its positive and
negative parts F* and F~ are integrable. Apply Tonelli’s Theorem
to F* and F~ to deduce that the corresponding f* and f~ have finite
integrals with respect to u. Hence f* and f~ are finite-valued
p-almost everywhere, so their difference f is defined w-almost every-
where and the first part of (10.9) is clear. The second part is similar.

Q.E.D.

Since we have chosen in Chapter 5 to restrict the use of the word
“integrable” to real-valued functions, we cannot conclude that the
functions f, g defined in (10.8) are integrable. However, they are
almost everywhere equal to integrable functions.

It will be seen in an exercise that Fubini’s Theorem may fail if the
hypothesis that F is integrable is dropped.

EXERCISES

10A. Let A < Xand B< Y. If Aor Bisempty,then4 x B = 0.
Conversely, if A x B = 0, then either A = @ or B = 0.

10.B. Let A; < Xand B; = Y, j = 1,2. If A, x By = A, X B,
#@, then A, = Ay and By = Bs.

10.C. Let A4, < Xand B, < Y,j=1,2. Then

(A; x By) U (A; x By) = [(4,\ 42) x Bi]
V(4N Ay x (B, Y By U [(A2\ 41) x By,

and the sets on the right side are mutually disjoint.
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10.D. Let (X, X) and (Y, Y) be measurable spaces. If 4;,€ X and

B;e Yforj=1,...,m, then the set

U (4; x B)
i=1
can be written as the disjoint union of a finite number of rectangles in Z.
10.E. Let 4, < Xand B, < Y,j=1,2. Then

(4, x By)\ (42 x By) = [(A;, N A3) x (B, \ B,)]
U (A, \ A x By
(A, x B))N(Ay; x By) = (A, N Ay) x (B, N B,).

10.F. If (R, B) denotes the measurable spacce consisting of real

numbers together with the Borel sets, show that every open subsct of

R x R belongs to B x B. In fact, this o-algebra is the o-algebra
generated by the open subsets of R x R. (In other words, B x B is
the Borel algebra of R x R.)

10.G. Let fand g be real-valued functions on X and Y, respectively;
suppose that f is X-measurable and that g is Y-measurable. If 4 is
defined for (x,y) in X x Y by h(x,y) = f(x) g(»), show that A is
X x Y-measurable.

10.H. If Eis a subset of R, let y(E) = {(x,y)eR x R: x — ye E}.
If E€ B, show that y(E)e B x B. Use this to prove that if fis a
Borel measurable function on R to R, then the function F defined by
F(x,y) = f(x — y) is measurable with respect to B x B.

10.1. Let £ and F be subsets of Z = X x Y, and let xe X. Show
that (E\ F), = E,\ F.. If (E,) are subsets of Z, then

(U Ea)x = U (Ea)x-

10.J. Let (X, X, p) be the measure space on the natural numbers
X = N with the counting measure defined on all subsets of X — N
Let (Y, Y,v) be an arbitrary mcasure space.  Show that a set 2on
Z = X x Ybelongsto Z = X x Yiland only if each section 1 o/
belongs to Y. In this case there is a unique product measare o, and

w(E) 2 w(l)), l'c 7

n-1
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are measurable and
[ fide=aE) = [ gnav
X b ¢

It is clear that the monotone increasing sequences (f,) and (g,) converge
to the functions f'and g defined by

Sx) =), g(y) = wEY).

If we apply the fact that 7 is a measure and the Monotone Convergence
Theorem, we obtain

[ 1=y = [ gav,

so that Ee M. Since = is finite measure, it can be proved in the same
way that if (F,) is a monotone decreasing sequence in M, then F = (") F,
belongs to M. Therefore M is a monotone class, and it follows from
the Monotone Class Lemma that M = Z.

If the measure spaces are o-finite, let Z be the increasing union of a
sequence of rectangles (Z,) with #(Z,) < +oo0 and apply the previous
argument and the Monotone Convergence Theorem to the sequence
(ENZ,). Q.E.D.

10.9 ToNeLL'S THEOREM. Let (X, X, p) and (Y, Y,v) be o-finite
measure spaces and let I be a nonnegative measurable function on
Z —~ X x YitoR. Then the functions defined on X and Y by

(10.4) 0 = [ Edr g0) = [ P,
Y X
are measurable and

(10.5) fx fdu = L Fdr = J;gdv.

In other symbols,

(10.6) fx (Lm) i = LFdw=J;(fx de) dv.

PROOF. If Fis the characteristic function of a set in Z, the assertion
follows from the Lemma 10.8. By linearity, the present theorem holds
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for a measurable simple function. If F is an arbitrary nonnegative
measurable function on Z to R, Lemma 2.11 implics that there is a
sequence (P,) of nonnegative measurable simple functions which
converges in a monotone increasing fashion on Z to /. If ¢, and ¢, are
defined by

107) g = [ @deds b = [ @),
Y X
then @, and i, are measurable and monotone in n. By the Monotone

Convergence Theorem, (p,) converges on X to fand (4,) converges on
Yto g. Another application of the Monotone Convergence Theorem

implies that
f fdp limf @n dp = Iimf D, dr
X X z

limJ. P, dv = J- gdv.
v y

The same theorem also shows that

f Fdn = limj o, dr,
Z Z

from which (10.5) follows. Q.E.D.

It will be seen in the exercises that Tonelli’'s Theorem may fail if we
drop the hypothesis that F is nonnegative, or if we drop the hypothesis
that the measures u, v are o-finite.

Tonelli’s Theorem deals with a nonnegative function on Z and
affirms the equality of the integral over Z and the two iterated integrals
whether these integrals are finite or equal +oo. The final result
considers the case where the function is allowed to take both positive
and negative values, but is assumed to be integrable.

10.10 FuBINI'S THEOREM. Let (X, X, ) and (Y, Y v) be o finite
spaces and let the measure won Z — X = Y be the product of peand v 1/
the function FonZ = X x Y to R is integrable with respect to n then
the extended real-valued functions defined almost everywhere by

(|08) f(X) = J; I'.\ (Il‘, £2( ‘I') - ‘ I ¢/,¢

JX
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Similarly, if y € Y, then the y-section of f is the function f¥ defined
on X by

fUx) =fx,»), xeX.

10.6 LEMMA. (a) If E is a measurable subset of Z, then every section
of E is measurable.

(b) If f is a measurable function on Z to R, then every section of f is
measurable.

PROOF. (a) If E = A x Band x € X, then the x-section of E is B
if xe A, and is 0 if x¢ 4. Therefore, the rectangles are contained in
the collection E of sets in Z having the property that each x-section is
measurable. Since it is easily seen that E is a o-algebra (see Exercise
10.1), it follows that E = Z.

(b) Let xe X and « € R, then

YeY: fi(») >a ={yeY:f(x,y) >«
={(x,)eX x Y:f(x,)) > o}x.

If fis Z-measurable, then f, is Y-measurable. Similarly, /¥ is X-
measurable. Q.E.D.

We interpolate an important result, which is often useful in measure
and probability theory, and which will be used below. We recall (see
Exercise 2.V) that a monotone class is a nonempty collection M of sets
which contains the union of each increasing sequence in M and the
intersection of each decreasing sequence in M. It is easy (see Exercise
2.W) to show that if 4 is a nonempty collection of subsets of a set S,
then the o-algebra S generated by 4 contains the monotone class M
generated by 4. We now show that if 4 is an algebra, then S = M.

10.7 MoNOTONE CLASS LEMMA. If A is an algebra of sets, then the
o-algebra S generated by A coincides with the monotone class M generated
by A.

PROOF. We have remarked that M < §. To obtain the opposite
inclusion it suffices to prove that M is an algebra.

If Ec M, define M(E) to be the collection of Fe M such that
I'\FF, En F, F\E all belong to M. Evidently 0, Ee€ M(E) and it is
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readily seen that M(F) is a monotone class. Morcover, Fe M(E) if
and only if Ee€ M(F).

If E belongs to the algebra A, then it is clear that 4 < M(E).
But since M is the smallest monotone class containing A, we must have
M(E) = Mfor Ein A. Therefore,if E€ Aand F'« M, then I« M(E).
We infer that if E€ A and Fe M, then E € M(F) so that A « M(I) for
any Fe M. Using the minimality of M once more we conclude that
M(F) = M for any Fe M. Thus M is closed under intersections and
relative complements. But since X € M it is plain that M is an algebra;
since it is a monotone class, it is indeed a o-algebra. Q.E.D.

It follows from the Monotone Class Lemma that if a monotone class
contains an algebra A4, then it contains the o-algebra generated by A.

10.8 LEMMA. Let (X, X, p) and (Y, Y, v) be o-finite measure spaces.
IfEe Z = X x Y, then the functions defined by

(10.2) S(x) = Ey), g(y) = EY)

are measurable, and

(10.3) fx fdu = n(E) = fygdv.

PROOF. First we shall suppose that the measure spaces are finite
and let M be the collection of all E € Z for which the above assertion
is true. We shall show that M = Z by demonstrating that M is a
monotone class containing the algebra Z,. In fact, if E= A4 x B
with 4 € X and Be Y, then

Sx) = x4 (B),  g(»y) = xu(y) 1 (A),
f fdp = p(A)v(B) = f gdv.
X Y
Since an arbitrary element of Z, can be written as a finte disjoimt
union of rectangles, it follows that Z, < M.

We now show that M is a monotone class,  Indeed, let (£,) be a
monotone increasing sequence in M with union /2. Therefore

fn(x) = V((I':n)n)- Kn( ") o /'(( "‘v")v)

—
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10.3 DerNiTIoN.  If (X, X) and (Y, Y) are measurable spaces, then
Z — X x Y denotes the o-algebra of subsets of Z = X x Y generated
by rectangles A x B with A€ Xand B€Y. We shall refer to a set in
Z as a Z-measurable set, or as a measurable subset of Z.

If (X, X, ) and (Y, Y, v) are measure spaces, it is natural to attempt
to define a measure 7 on the subsets of Z = X x Y which is the
“product” of p and v in the sense that

A x B) = p(A)w(B), A€X,BeY.

(Recall the convention that 0(+o0) = 0.) We shall now show that
this can always be done.

10.4 PrRODUCT MEASURE THEOREM. If (X, X, p) and (Y, Y,v) are
measure spaces, then there exists a measure w defined on Z=XxY

such that
(10.1) 7(A x B) = u(A) v(B)

forall Ae Xand BeY. If these measure spaces are o-finite, then there
is a unique measure m with property (10.1).

PROOF. Suppose that the rectangle A x B is the disjoint union of a
sequence (A4, x B)) of rectangles; thus

Xaxu(X, ¥) = xa(x) xs(y) = Z XA,(x) XB,(.V)
i=1

for all xe X, ye Y. Hold x fixed, integrate with respect to v, and
apply the Monotone Convergence Theorem to obtain

KW HB) = 3 x4 B).
A further application of the Monotone Convergence Theorem yields
WA HB) = 3 W) (B).
Now let E € Z,; without loss of generality we may assume that

E=\ (4 % B),
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where the sets 4; x B, are mutually disjoint rectangles.  If we define
mo(E) by

m(E) = D w(A,) (B,
=1

the argument in the previous paragraph implies that m, is well-defined
and countably additive on Z,. By Theorem 9.7, there is an extension
of 7, to a measure 7 on the o-algebra Z generated by Z,. Since n is
an extension of =, it is clear that (10.1) holds.

If (X, X, p) and (Y, Y,v) are o-finite, then =, is a o-finite measure
on the algebra Z, and the uniqueness of a mcasure satisfying (10.1)
follows from the uniqueness assertion of the Hahn Extension Theorem
9.8. Q.1D.

Theorem 10.4 establishes the existence of a measure 7 on the o-algebra
Z generated by the rectangles {4 x B: Ac X, Bc Y} and such that
(10.1) holds. Any such measure will be called a product of x and v.
If « and v are both o-finite, then they have a unique product. In the
general case the extension procedure discussed in the previous chapter
leads to a uniquely determined product measure. However, it will be
seen in Exercise 10.S that it is possible for two distinct measures on Z
to satisfy (10.1) if » and v are not o-finite.

In order to relate integration with respect to a product measure and
iterated integration, the notion of a section is useful.

10.5 DerINITION. If E is a subset of Z = X x Y and x ¢ X, then
the x-section of E is the set

E.={yeY:(x,py)c E}
Similarly, if y € Y, then the y-section of I is the scl
EY = {xc X :(v,») I},

If fis a function defined on Z to R, and v X, then the v osection ol /
is the function f, defined on Y by

SAp) = v, ), yo v,
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when —0 < a < b < +00. Show that u(R) = lim g(x).
X~

9.V. Let f be Riemann integrable on [a, b] to R. Then there exists
a monotone increasing sequence (p,) and a monotone decreasing

sequence (f,) of step functions such that @.(x) < S(x) < ¢u(x) for CHAPTER 10

x € [a, b] and

lim fq,,. d\ = lim f./,,, ax.
Product Measures

(Here A denotes Lebesgue measure.) Show that f = lim ¢, = lim ¢, (]

almost everywhere, that fis Lebesgue measurable, and that

f fdx = f: f() dx. ‘ {‘

Let X and Y be two sets; then the Cartesian product Z — X x Y is I
the set of all ordered pairs (x, y) with x € X and y ¢ Y. We shall first
show that the Cartesian product of two measurable spaces (X, X) |
and (Y, Y) can be made into a measurable space in a natural fashion. i‘l
Next we shall show that if measures are given on each of the factor a
spaces, we can define a measure on the product space. Finally, we ‘
shall relate integration with respect to the product measure and iterated
integration with respect to the measures in the factor spaces. The
model to be kept in mind throughout this discussion is the plane, which |
we regard as the product R x R.

10.1 DeriNiTioN.  If (X, X)and (Y, Y)are measurable spaces, then a ‘ |
set of the form 4 x B with 4 € X and Be Y is called a measurable
rectangle, or simply a rectangle, in Z = X x Y. We shall denote the
collection of all finite unions of rectangles by Z,.

It is an exercise to show that every set in Z, can be expressed as a
finite disjoint union of rectangles in Z (sce Exercise 10.1)).

10.2 LEMMA. The collection Z, is an algebra of subsets of 7

PROOF. It is clear that the union of a finite number of sets i Z,
also belongs to Z,. Similarly, it follows from the first part of Fxercise
10.E that the complement of a rectangle in Z belonps to Z, Apply
De Morgan’s laws to see that the complement of uny wet in Z, belongs
to Z,. Q.E.D.
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open set which is the union of a finite number of open intervals such
that
lIxa — xcll = MAAG) < e.

Moreover, if ¢ > 0 there exists a continuous function f such that
ta =S = [lxa—flar <.

9.K. Let A be a Lebesgue measurable subset of R. Show that
there exists a Borel measurable subset B of R such that 4 < B and
such that /*(B\ A) = 0. (Hint: Consider the case where /*¥(4) < +o0
first.) Show that every Lebesgue measurable set is the union of a
Borel measurable set (with the same measure) and a set of Lebesgue
measure zero. In the terminology of Exercise 3.L, this asserts that
the Lebesgue algebra is the completion of the Borel algebra. As a
consequence of Exercise 3.N, we infer that every Lebesgue measurable
function is almost everywhere equal to a Borel measurable function.

9.L. If g belongs to L(R, B, ) and ¢ > 0, then there exists a con-
tinuous function f such that

lg =Sl = flg _fldr <.

9.M. If B is the Borel algebra and A is Lebesgue measure on B,
show (i) A(G) > 0 for every open G # 0, (ii) A(K) < +00 for every
compact set K, and (iii) A(x + E) = NE) for all E€ B. (Here
x+E={x+y:yekE})

9.N. Let X be a set, A4 an algebra of subsets of X, and p a measure
on A. If Bis an arbitrary subset of X, let u'(B) be defined to be

W(B) = inf{u(4) : B< A€ A}.

Show that u'(E) = p(E) for all E € 4 and that w*(B) < p/(B). More-
over, u* = p’ in case X is the countable union of sets with finite
p-measure. Is p’ countably subadditive in the sense of 9.5(e)?

9.0. Let X be an uncountable set and let A be the collection of sets
I which are either finite or have finite complement. In the former
case let u(E) = 0; in the latter, let p(E) = +o0. Show that p is a
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measure on A. Calculate the outer measure p* corresponding to
Definition 9.4. Calculate the set function p’ defined in Exercise 9.N.
Are they the same?

9.P. Let X be a set and let « be defined for arbitrary subscts of X to
R and satisfy

0< (E) < (EVUF) < oE) + a(F),
when E and F are subsets of X. Let S be the collection of all subsets
E of X such that
o(A) = (A NE)+ «(A\E)

foralld < X. IfS # 0, itisan algebra and « is additive on S.

9.Q. It may happen that the collection § in Exercise 9.1 is empty.
For example, let «(E) = 1 for all £ < X.

9.R. Let X and A be as in Exercise 9.D, and let 4, be the o-algebra
generated by 4. Let p, be the counting measure on A, and let
pa = 2u,. Show that p; = py, on A but not on A4,. (Hence the
o-finiteness hypothesis in Theorem 9.8 cannot be dropped.)

9.S. Let g be a monotone increasing and right continuous function
onRtoR. Ifp,is defined as at the end of this section, show that p, isa
measure on the algebra F.

9.T. Consider the following functions defined for x € R by:

(@) gi(x) = 2x, (b) go(x) = Arctanx,
©) g(x)=0,x <0, (d) gx)=0,x<0,
=1,x20, =x,x2=0.
Describe the Borel-Stieltjes measures determined by these functions.
Which of these measures are absolutely continuous with respect (o
Borel measure? What are their Radon-Nikodym derivatives?
Which of these measures are singular with respect to Borel measure?
Which of these measures are finite? With respect to which of these
measures is Borel measure absolutely continuous?
9.U. Let u be a finite measure on the Borel setv B ol K and let
gx) = p.((—oo,x]) for x ¢ R. Show that g s monotone increasimg
and right continuous, and that

;L((u, I)]) gh)  ula)
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In view of (9.10) we see that if 2 < k < m, then
|G(@ten — Pre-rm) — {g(ty) — g(ti-}| < e(m 74

Apply G to f; and integrate f» with respect to y. The inequality just
obtained yields

6 - [ faarl < e

But since f; lies within € of f, we also have

Iﬁﬁw—ﬁfw

Combining the inequalities, we arrive at the inequality

< ey(J).

G~ [ ral < e@lGl + 0,

and since e is arbitrary, we deduce (9.9). Q.E.D.

If the reader will check the proof of Lemma 8.13, he will see that an
arbitrary bounded linear functional G on C(J) can be written as the
difference G* — G~ of two positive bounded linear functionals.
Making use of this observation, one can extend the Riesz Representa-
tion Theorem given above to represent a bounded linear functional on
C(J) by means of integration with respect to a charge defined on the
Borel subsets of J.

EXERCISES

9.A. Establish that the family F of all finite unions of sets of the
form (9.1) is an algebra of sets in R.
9.B. Show that the family G of all finite unions of sets of the form

(avb)’ (—wab)a (a’ +®), (_w? +w)

is not an algebra of sets in R. However, the o-algebra generated by G
iv the family of Borel sets.
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9.C. Show that if the set (a, +00) is the union of a disjoint sequence
of sets (a,, b,], then

i I((ax, b)) = +o0.

9.D. Let X be the set of all rational numbers r satisfying 0 - r < 1
and let A be the family of all finite unions of *half-open intervals™ of
the form {re X:a <r < b}, where 0 <a < b < 1 and a,be Q.
Show that A4 is an algebra of subsets of X. Morcover, cvery non-
empty set in A is infinite. However, the o-algebra generated by A
consists of all subsets of X.

9.E. If E is a countable subset of R, then it has Lebesgue measure
zero.

9F. Let I, = (n,n + 1], for n =0, +1, +2,.. .. If a subset £
is contained in the union of a finite number of the {/,}, then /*(F) -
+00. However, construct a Lebesgue measurable set £ with /*(E£) <
+00 such that /*(E N 1,) > 0 for all n. Show that a subset £ of R is
Lebesgue measurable if and only if E NI, is Lebesgue measurable
for each n.

9.G. If 4 is a Lebesgue measurable subset of R and ¢ > 0, show that
there exists an open set G; 2 A such that

I*(A) < I¥G,) < I*(A) + «.

9.H. If B is a Lebesgue measurable subset of R, if € > 0, and if
B < I, = (n,n + 1], then there exists a compact set K, < B such that

I*(K,) < I*(B) < I*(K,) + =.

(Hint: Apply the Exercise 9.Gto 4 = I, \ B.)
9.1. If A is an arbitrary Lebesgue mcasurable set in R, apply the

preceding exercises to show that
I*(A) = inf{/*(G) : A < G, G open],
I1*(A) = sup {/*(K) : K« A, K compact]

9.J. Let A = /* denote Lebesgue measure on K, and let A be a
Lebesgue measurable set with A(A) < oo, e - 0, there exists an
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Banach space C(J) of all continuous functions on J to R with the norm

(9-8) If = sup{lf()] : xeJ}.

This result, due to F. Riesz, has been considerably extended in many
directions. Indeed, it is taken as the point of departure for the develop-
ment of a theory of integration by many authors who prefer to regard
the integral as a linear functional on spaces of continuous functions.
We choose to take a very concrete approach to this theorem and offer
a proof which is closely parallel to the Riemann-Stieltjes integral
version presented in Reference [1], pp. 290-294.

9.9 Riesz REPRESENTATION THEOREM. If G is a bounded positive
linear functional on C(J), then there exists a measure y defined on the
Borel subsets of R such that

9.9) G(f) = f fdy

for all fin C(J). Moreover, the norm |G| of G equals y(J).

PROOF. If ¢ is such that @ < ¢t < b and n is a sufficiently large
natural number, let ¢, ,, be the function in C(J) which equals 1 on [a, 7],
which equals 0 on (¢ + 1/n, b], and which is linear on (¢, ¢t + 1/n]. If
n<mand vcJ, then 0 < ¢ (x) < @ (x) <1, so that the real

sequence (G(g,,)) is bounded and decreasing. If 1 € [a, b), we define
g(t) = "l4ir+nm G(@e,n)-

Further, set g(t) = 0 for ¢t < a; if t > b, we set g(t) = G(p,) where
@o(x) = 1forallx eJ. Itisreadily seen that g is amonotone increasing
function on R.

We claim that g is continuous from the right. This is clear if t < a
ort > b. Suppose that f €[a, b) and ¢ > 0 and let

n > sup {2, |G[e™"}
be so large that
g(1) < Glo,n) < g(1) + &
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If 4, is the function in C(J) which equals | on [a, 7 + n~?], which
equals O on (r + n=* — n~=2, b], and which is lincar on

(t+n2t+n'—nr,

then an exercise in analytic geometry shows that |4, — ¢,/ < 1/n.
Therefore

Gl) < Gl + () 161 < w0 + 2,

so that g(¢r) < g(t + n=2) < g(1) + 2e.

According to the Hahn Extension Theorem there exists a measure y
on the Borel subsets of R such that 'y((u. ﬁ]) 2B gla). In
particular, this shows that y(£) = 0, if £EnJ = @, that

Yla, ) = y((a — 1, ) = g(o),

and that ||G|| = [G(ws)| = 9(6) = 7(J).

It remains to show that equation (9.9) holds for fin C(J). Ife > 0,
since f is uniformly continuous on J, there is a () > O such that if
|x —y] < 8e) and x,yeJ, then |f(x)—f(»)| <e. Now let
a=1,<t <---<t,=b be such that sup {t, — t,_,} < 18(¢) and
choose n so large that 2/n < inf{t, — t,_,} and thatfork = 1,...,m,
then

(9.10) 8(te) < Gy, .n) < g(1) + e(m|f])1.

We now consider functions defined on J by

Si(x) = f(t) @i, a(x) + Z SN ey (X))

Fo(X) = £(2) xitg () + D L) xaw (V).

-
-2

Note that f; € C(J) and that /, is a step function on /. 1w clear that
sup {|fo(x) — f(x)] : xeJ} < e and as an exercise (or wee |1, po 292)
the reader can show that ||/, — /| = «. Therelore we have

|G~ GUDI = e ]
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Suppose that u is o-finite and let (F,) be an increasing sequence of
sets in A with u(F,) < 4+ and X =|J F,. From the preceding
paragraph, u*(E N F,) = »(E N F,) for each E in A*. Therefore

p*(E) = lim p*(EN F)
= lim WE N F,) = W(E),

so that u* and v agree on A*. Q.E.D.

LEBESGUE MEASURE

We now return to the considerations that prompted the foregoing
extension procedure, namely, to the generation of a measure on the
real line R. In Lemma 9.3 we saw that the set F of all finite unions of
sets of the form

(a’b]’ (_wab]’ (a’ +w), (—(X), +w)v

was an algebra of subsets of R and that the length function / gives a
measure on this algebra F. If we apply the extension procedure to /
and F, we generate a measure space (R, F*,I*). The c-algebra F*
obtained in this construction is called the collection of Lebesgue
measurable sets and the measure /* on F* is called Lebesgue measure.

Although we sometimes wish to work with (R, F*,[*), it is often
more convenient to deal with the smallest o-algebra containing F than
with all of F*. It is readily seen that this smallest o-algebra is exactly
the collection of Borel sets. The restriction of Lebesgue measure to
the Borel sets is called either Borel or Lebesgue measure. Lest the
reader feel that restricting to B weakens the theory by substantially
lessening the collection of measurable sets and functions, we call
attention to Exercise 9.K where it is seen that every Lebesgue measurable
set is contained in a Borel measurable set with the same measure, and
every Lebesgue measurable function is almost everywhere equal to a
Borel measurable function.

f It might be thought that every subset of the real line is Lebesgue measurable,
but this is not the case. For the construction of sets which are not Lebesgue
monnurable, see pp.171 ff.
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Sometimes it is more convenient to use a notion of the magnitude
of an interval other than length. This can be treated as follows. Let
g be a monotone increasing function on R to R so that x < y implies
that g(x) < g(y). In addition, we shall assume that g is continuous
on the right at every point, so that

g(lc) = lim g(c + h).
h—0+
Since g is monotone, it also follows that

lim g(x), lim g(x)

xX— = ®

both exist, although they may be —oco or +o0.
For such a function we define

nq((a, b]) = g(b) — gla),
uo((=0, b]) = g(b) — lim g(x),

po((@, +0)) = lim g(x) — £(@),
Ho(—0,0)) = lim g(x) — lim g(x).

We further define p, on the algebra F of finite disjoint unions of such
sets to be the corresponding sums. If the reader will check the details
of the proof of Lemma 9.3, he will see that it can be easily modified
to show that p, gives a o-finite measure on the algebra F. Therefore,
this measure has a unique extension, which we also denote by y, to the
algebra of all Borel subsets of R. This extension is often referred to
as the Borel-Stieltjes measure generated by g. (Of course, by applying
Theorem 9.7, u, has an extension to a complete o-algebra which
contains the Borel sets. This extension is called the Lebesgue-Stieltjes
measure generated by g.)

LINEAR FUNCTIONALS ON C

We shall conclude this chapter by showing that there woan imtimate
correspondence between Borel-Sticltjes measures on n Hhite closed
interval J = [a, b] and bounded positive linenr functionals on the
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Since F, < E, then A\ E< A\F, and letting n— the above
relations yields

> WA O E) + uHA\E) < p(A).
k=1
On the other hand, it follows from Lemma 9.5(¢) that

WANE) < S pHANE,
p*(A) < p*(A4 N E) + p*(A\ E).

On combining the last three inequalities we infer that

@

p*(A) = p*(A N E) + p*(A\ E) = D w4 N0 E) + p*(4\ E).
k=1
In particular, this shows that E = Ur=1 E; 1s p*-measurable. On
taking 4 = E, we obtain (9.7).

It remains to prove that 4 = A*. It was proved in Lemma 9.5(d)
that if E€ A4, then p*(E) = u(E), but we need to show that E is
p*-measurable. Let A be an arbitrary subset of X; it follows from
Lemma 9.5(e) that

p*(A) < p*(A N E) + p*(A\ E).

To establish the opposite inequality, let ¢ > 0 be arbitrary and let (F,)
be a sequence in A such that 4 < F, and

o0

> u(Fy) < p*A) + e

n=1
Since ANE < J(F,nE)and A\ E = (F.\ E), it follows from
Lemma 9.5(e) that

o @

WANE)< > WF,NE), pHA\E)< 3 wF:\E).

n=1 n=1

Hence we have

WA OE) + A\ E) < 3 (u(F 0 E) + Wy \ E)

o

= S WF) < pHA) + e

n=1
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Since ¢ is arbitrary, the desired inequality is established and the set E
belongs to 4*. Q.E.D.

The Carathéodory Extension Theorem shows that a measure g on
an algebra A4 can always be extended to a measurc p* on a o-algebra
A* containing 4. The o-algebra A* obtained in this way is auto-
matically complete in the sense that if £e A* with j*(F) — 0, and if
B < E, then Be A* and p*(B) = 0. To prove this, let A be an
arbitrary subset of X and employ Lemma 9.5(c) to observe that

p*(A) = p*(E) + p*(A) = p*(A N B) + p*(A\ B);
and, as before, the inequality
p*(4) < p¥(A N B) + p*(A4\ B)
follows from Lemma 9.5(¢). Hence B is p*-measurable and
0 < pu*(B) < p*E) < 0.

We shall now show that in the case that x is a o-finite measure, it has
a unique extension to a measure on A*.

9.8 HAHN EXTENSION THEOREM. Suppose that p is a o-finite measure

on an algebra A. Then there exists a unique extension of i to a measure
on A*.

PROOF. The fact that u* gives a measure on A* was proved in
Theorem 9.7 even without the o-finiteness assumption. To establish
the uniqueness, let v be a measure on 4* which agrees with x on 4.

First suppose that p and therefore both p* and v are finite measures.
Let E be any set in A* and let (E,) be a sequence in A such that
E c|\J E,. Since vis a measure and agrees with . on 4 we have

0 ™

WE) < o Ol E) < D uE) = D plk).
= nel ne=1
Therefore w(E) < p*(E) for any £¢ A*.  Since p* and v are additive,
p¥E) + p*(X\E) = v(E) + v(X\ £). Since the terms on the right
hand side are finite and not greater than the corresponding terms on
the left side, we infer that p*(E) ~ v(£) forall £c A*  Thivestablishes
the uniqueness when p is a finite measure.
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B =\J(BNE,). Sincepu is a measure on A, then

8

wB) < 3, WBNE) < 2 wE),

from which it follows that u(B) < p*(B).
To establish (e), let € > 0 be arbitrary and for each n choose a
sequence (E,;) of sets in 4 such that

Boc () Ew and D> p(Ew) < (B + 55
k=1 k=1

Since {E,. :n,keN}is a countable collection from 4 whose union
contains {_J B, it follows from the definition of p* that

f"*( O Bn) < i i M(En) < i n*(B,) + e.
n=1 n=1k=1 n=1

Since ¢ is arbitrary, the desired inequality is obtained. Q.E.D.

Property (¢) of Lemma 9.5 is referred to by saying that p* is countably
subadditive.

Although p* has the advantage that it is defined for arbitrary subsets
of X. it has the defect that it is not necessarily countably (or even
finitely) additive. We are willing to restrict u* to a smaller o-algebra
provided we can find one containing A4 and over which p* has the
property of countable additivity. There is a remarkable condition
due to Carathéodory which provides the desired restriction of the
domain of p*.

9.6 DEFINITION. A subset E of X is said to be p*-measurable if
(9.6) p*(A) = p*(4 N E) + p*(4\ E)

for all subsets 4 of X. The collection of all p*-measurable sets is
denoted by A*.

Condition (9.6) indicates an additivity property on p*. In loose
terms, a set E is p*-measurable in case it and its complement are
sulliciently separated that they divide an arbitrary set A additively.
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9.7 CARATHEODORY EXTENSION THEOREM. The collection A* of all
p*-measurable sets is a o-algebra containing A. Morcover, if (E,) is a
disjoint sequence in A*, then

©.7) (U E) = i WHE).

PROOF. It is clear that @ and X are p*-measurable, and that if
E € A*, then its complement X\ E belongs to A4*.

Next we shall show that A* is closed under intersections.  Indeed,
suppose that E and F are p*-measurable. Then for any A4 < X and
E € A*, we have

p*(ANF) = p*(ANFNE) + p*((AN )\ E)

Since F € A*, then
p*(A) = p¥ (AN F) + p* A4\ F).

Let B = A\ (E N F), then it is readily seen that BN F = (AN F)\ E
and B\ F = A\ F; since Fe A* it follows that

WA\ (E 0 F)) = p*(4 0 F)\ E) + w4\ F).
Combining these three relations, we obtain

p*(A) = pHA N ENF) + p*(4\(EN F)),

which shows that E N F belongs to A*. Since A* is closed under
intersection and complementation, it follows that 4* is an algebra.

Suppose that E, Fe A* and that EN F = 0. If we take 4 to be
A N (E U F) in (9.6), we obtain

p(AN(EVF) = p* AN E) + p* (AN F).

For A = X, this relation implies that p* is additive on A*.

We shall now show that A4* is a e-algebra and that p* i countably
additive on A*. Let (E,) be a disjoint sequence in A* and let £ — UJF,
From the preceding paragraph, we know that /| Ji oy, belongs
to A*, and that if 4 is any subsct of X, then

pHA) = pHA O F) + p* A\ F) = D pt A0 B A E).
I

™
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Since n is arbitrary, we infer that
— |
(9.3) >~ 1((as, b51) </((a,0]).
=1
Conversely, let € > 0 be arbitrary, and let (¢;) be a sequence of
positive numbers with 3" ¢; < /2. Now consider the intervals

Ij=(a—epbj+es), GEN.

From (9.2) it follows that the open sets {I; : j € N} form a covering
of the compact interval [a,b]. Hence, this interval is covered by a
finite number of the intervals, say by Iy, I, ..., Im. By renumbering
and discarding some extra intervals we may assume that

ay —€1 <a, b<bm+€m1

aj — £ <bj—1+€-1, J=2...,m.

It follows from these inequalities that

b—a < (b +em) — (a1 —€1) < D_I(bs +¢5) — (a5 —€5)]

i=1
m 00

s Z(b" - "’j) \ € S Z(b, e a]) + €.
j=1 j=1

Since e > 0 is arbitrary, it follows that {((a,b]) < 372, ! ((aj,b5)-
Combining this inequality with (9.3), we conclude that the length
function [ is countably additive on F. Q.E.D.

THE EXTENSION OF MEASURES

Now that we have given a significant example of a measure defined
on an algebra of sets, we return to the general situation. We shall
show that if 4 is any algebra of subsets of a set X and if p is a measure
defined on A, then there exists a o-algebra A* containing 4 and a
measure p* defined on A* such that p*(E) = w(E) for Ein 4. In
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other words, the measure x can be extended to a measure on a o-algebra
A* of subsets of X which contains 4. The procedure that we employ
is the following: we shall use p to obtain a function dcfined for all
subsets of X, and then pick out a collection of scts on which a certain
additivity property holds.

9.4 DerINITION. If B is an arbitrary subset of X, we define
9.4) p*(B) = inf > u(E),
i=1

where the infimum is extended over all sequences (£)) of sets in A
such that

(9.5) Be ) E,
'ES

It should be remarked that the function p* just defined is usually
called the outer measure generated by n. Although this terminology
is unfortunate because p* is not generally a measure, u* does have a few
properties reminiscent of a measure.

9.5 LEMMA. The function p* of Definition 9.4 satisfies the following:
(@) p*@) = 0.

(b) p*(B) > 0, for B < X.

(c) If A < B, then u*(A) < p*(B).

(d) If Be A, then p*(B) = w(B).

(e) If (B,) is a sequence of subsets of X, then

w (0 8) < 3w,

PROOF. Statements (a), (b), and (¢) are immediate consequences of
the Definition 9.4.

(d) Since {B, 0,0, ...} is a countable collection of sets in A whose
union contains B, it follows that

pw¥(B) < (B) + 01 0 ~ ()

Conversely, if (E,) is any sequence from A with # | J £, then




CHAPTER 9

Generation of Measures

In the preceding chapters we have given a few examples of measures,
but they are of a rather special form, and it is time to demonstrate how
measures can be constructed. In particular, we wish to show how to
construct Lebesgue measure on the real line R from the length of an
interval.

It is natural to define the length of the half-open interval (a, b] to be
the real number b — a and the length of the sets (—o0, b] = {x € R :
x < b}, and (a, +0) = {xe R :a < x}, and (—o0, +00) to be the
extended real number +oo. We define the length of the union of a
finite number of disjoint sets of these forms to be the sum of the
corresponding lengths. Thus, the length of

Ut.bl is 2 (b~ a)
=1 i=1

provided the intervals do not intersect.
At first glance one might think that we have defined a measure on
the family F of all sets which are finite unions of sets of the form

.1) (a,b], (—,b], (a, +), (=00, +0).

However, this is not the case since the countable union of sets in F is
not necessarily in F, so that Fis not a o-algebra in the sense of Definition
2.1.

9.1 DErFINITION. A family A of subsets of a set X is said to be an
nlgebra or a field in case:

6
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(i) 0, X belongto 4.

(ii) If E belongs to 4, then its complement X'\ ¥ also belongs to 4.

(iii) If E,,..., E, belong to A4, then their union (J}., E; also
belongs to 4.

It is convenient to define the notion of a measure on an algebra.
In doing so, we require the set function to be countably additive over
sequences whose union belongs to the algebra.

9.2 DErINITION. If A4 is an algebra of subsets of a sct X, then a
measure on A is an extended real-valued function p defined on A such
that (i) w(®) = 0, (i) w(E) = 0 for all Ec A, and (iii) if (L) is any
disjoint sequence of sets in A4 such that ., E, belongs to A4, then

WU E) = S WE.

n=1

It seems reasonably clear, but not entirely obvious, that length gives
a measure. We now prove this fact.

9.3 LEMMA. The collection F of all finite unions of sets of the form
(9.1) is an algebra of subsets of R and length is a measure on F.

PROOF. It is readily seen that Fis an algebra. If/denotes the length
function, then conditions 9.2(i) and (ii) are trivial. To prove (iii) it is
enough to show that if one of the sets of the form (9.1) is the union of a
countable collection of sets of this form, then the length adds up
correctly. We shall treat an interval of the form (a, b], leaving the
other possibilities as exercises. Suppose, then, that

@
9.2) (a,b] = ;L—Jx (aj, by,
where the intervals (a;, b,] are disjoint. Let (a,, b,], ..., (a,, b,] be
any finite collection of such intervals and suppose that
a<a <b <a,<---<b, , <a, b, b

(This may require a renumbering of the indices, but it can always be
arranged.) Now

2 I((ay, b)) l (b, a)
i1 =

<b, —a, < b a1 b))
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8.K. Let p be a finite measure, let A < u, and let P,, N, be a Hahn
decomposition for A — nu. Let P = (N P, N =\J N,. Show that
N is o-finite for A and that if E < P, E€ X, then either A(E) = 0 or
ME) = +00.

8.L. Use Exercise 8.K to extend the Radon-Nikodym Theorem to the
case where p is o-finite and A is an arbitrary measure with A « p. Here
£ is not necessarily finite-valued.

8.M. (a) Let X be an uncountable set and X be the family of all
subsets E of X such that either E or X'\ E is countable. Let w(E) equal
the number of elements in E if E is finite and equal +o0 otherwise, and
let A(E) = 0if E is countable and equal +oo0 if E is uncountable. Then
A « p, but the Radon-Nikodym Theorem fails.

(b) Let X = [0, 1] and let X be the Borel subsets of X. If p is the
counting measure on X and A is Lebesgue measure on X, then A is a
finite measure and A < u, but the Radon-Nikodym Theorem fails.

8.N. Let A, u be o-finite measures on (X, X), let A< p, and let
f = d\du. If g belongs to M*(X, X), then

J'g d\ = Jgfdp.

(Hint: First consider simple functions and apply the Monotone
Convergence Theorem.)

8.0. Let A, u, v be o-finite measures on (X, X). Use Exercise 8.N
to show that if v « A and A « p, then

dv  dvd\
% = p-almost everywhere.
Also, if \; « pforj=1,2, then

d _d)ry | dhy
P (AL + X)) = i + 4’ p-almost everywhere.

8.P. If A and p are o-finite, A € p, and p < A, then

dA 1

& = W , almost everywhere.

#.0. If A and p are measures, with A « pand A | u, then A = 0.
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8.R. If A is a charge and p is a measure, then [A| L s implies that
At and A\~ are singular with respect to p.

8.S. The collection of all charges on (X, X) is a Banach space under

the vector operations
(cu)(E) = ew(E), (A + p)(E) = ME) + w(E)
and the norm |u| = |u|(X).

8.T. Suppose g satisfies equation (8.10) for all fin L, and that ¢ > 1.
Let E. = {x:|g(x)| > c¢|G|}, and define f(x) to be +1 when
+g(x) > ¢|G| and to be O when x ¢ E.. Then

c|Glu(E) < G(fo) < [Gln(Ee),
which is a contradiction unless w(E.) = 0. Infer that |g(x)| < |G|
for p-almost all x.

8.U. If g satisfies (8.10) for all fe L,, show that g¢ L, and that
G = lglle-

8.V. The Riesz Representation Theorem for p = 2 can be proved by
some elementary Hilbert space geometry (see [S], pp. 249-50). We now
show that this result can be used to prove the Radon-Nikodym
Theorem. We shall limit our attention to finite measures A, p with
AL p. Letv = A+ pand show that

G(f) = ffd/\

defines a positive linear functional on Ly(X, X, v) with positive norm.
If g e Ly(X, X, v) is such that

G(f) = jfgdv, feLy(X, X, ),

then we see by taking f = yg, E€ X, that 0 < g(x) < | for v-almost
all x. Moreover, u{x : g(x) = 1} = 0. Sincev = A + jp, we have

J‘h (l = g) dA f/l )4 (/;1

for all nonnegative he Ly(X, X,v) and hence for all nonnepative
measurable 2. Now take i = x, /(1 — g) to infer that
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prOOF. If u(X) < oo, the proof of the preceding theorem requires
only minor changes to show that there exists a g in L, with |G| = gl
and such that

6() = [ fedn

for all fin L,. In addition, the procedure used before applies to
extend the result to the case where (X, X, p) is o-finite.

We now complete the proof by observing that a bounded linear
functional “vanishes off of a o-finite set.” More precisely, let (f,) be

a sequence in L, such that | fo =1 and
1
6tfy > 161(1 - ;)-

There exists a o-finite set X, in X outside of which all the f; vanish.
Let E€ X with EN Xo = 0,then ||fn £tx&llp < (1 + tPu(E))Y/P for
t >0, when p(E) < co. Moreover, since

G(f) + G(xtxp) < |G(fa £ tx5)s
it follows that

|Glrxe)| < liG'.'.{(‘ + 17 p(E)” — (1 N }1)}

for all nin N. First let n— o0, and then divide by ¢ > 0, to get

) 4 E lip __ 1
Gl < f6) ST HET =

If we apply L'Hospital’s Rule as 7 — 0+, we infer that G(xg) = 0, for
any E € X, u(E) < oo, outside of the o-finite set Xo. Therefore if f
is any function in L, such that X, N {xe X : f(x) # 0} = 0, it follows
that G(f) = 0.

Hence we can apply the preceding argument to obtain a function
¢ on X, which represents G, and extend g to all of X by requiring that

it vanish on the complement of Xo. In this way we obtain the desired

function. Q.E.D.
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EXERCISES

8.A. If P is a positive set with respect to a charge A, and if E€ X
and E < P, then E is positive with respect to A.

8.B. If P, and P, are positive sets for a charge A, then P, U Py is
positive for A.

8.C. A set Min Xisa null set for a charge Aif and only if [A[(M) = O.

8.D. If X is a charge on X, then the values of A arc bounded and

A(E) = sup{A(F) : F < E, Fe X},
A(E) = —inf{\F): F< E, Fc X}.

8.E. Let py, ptg, and pus be measures on (X, X). Show that p¢, < p,
and that p, < pg and py < pg imply that g, < py. Give an example
to show that p; « p, does not imply that p, << p;.

8.F. If (u,) is a sequence of measures on (X, X) with p,(X) < I, let
A be defined for E in X by

NE) = il 27" u(E).

Show that A is a measure and that p, < A for all n.

8.G. Let A be a charge and let . be a measure on (X, X). IfA <« pu,
then A*, A~, and |A| are absolutely continuous with respect to p.

8.H. Show that Lemma 8.8 is true even if p is allowed to be an
infinite measure. However, it may fail if A is an infinite measure.
[Hint: Let A be the counting measure on N, and let

WE) = 3 27"
nekE

8.1. Let u be defined as in Exercise 8.H and if £ < N, let A be
defined by

NE) =0, if £ 0,

= 400, it E /0.
Show that p is a finite measure on the o-algebra X of all subsets of N,
and that A is an infinite measure on X, Morcover, A < poand jooo Al

8.J. If X and g are o-finite and A <y, then the function /i the
Radon-Nikodym Theorem can be taken to be finite valued on X.
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Taking the suprema over all such g; in L, we obtain G*(f1) + G*(fy) <
G'(f, + f2). Conversely, ifO<h<fi+faletg =sup(h— f2,0)
and g, = inf (h,f3). It follows that g, + g» = hand that0 < g; < fi
Therefore G(h) = G(g,) + G(&2) < G*(fy) + G*(f2); since this holds
for all such h € L,, we infer that

G*(fy + ) = G*(f) + G*(f)

for all f; in L, such that f; > 0.
If fis an arbitrary element of L,, define
GH(f) = G*(fH) — G*(f")-

It is an elementary exercise to show that G* is a bounded linear

functional on L,. Further, we define G~ for fe L, by

G-(f) = G*(f) - G(),
so that G~ is evidently a bounded linear functional. From the defini-
tion of G* it is readily seen that G~ is a positive linear functional, and
it is obvious that G = G* — G™. Q.E.D.

8.14 RiEszZ REPRESENTATION THEOREM. If (X,X,p) is a o-finite
ded linear functional on L,(X, X, pn), then
such that equation (8.10) holds for all fin
0 if G is a positive linear functional.

measure space and G is a boun
there exists a g in Lo (X, X, p)
L,. Moreover, |G| =g« andg >

pROOF. We shall first suppose that w(X) < oo and that G is positive.
Define A on X to R by ME) = G(xz); clearly A(@) = 0. If (Ey,) is an
increasing sequence in X and E = \J E., then (xz,) converges pointwise

toxg. Sinceu(X) < o, it follows from Corollary 7.3 that this sequence

converges in L, to xg. Since
0 < NE) — NE,) = G(xs) — Gxz,)
= G(xg — X&) S HGH Ixs — XE,.“I,
it follows that A is a measure. Moreover, if Me X and p(M) =0,

then A(M) = 0, so that A < p.
On applying the Radon-Nikodym Theorem we obtain a nonnegative

measurable function on X to R such that

Glxs) = NE) = J' x5 8 do

Decomposition of Measures 91

for all E€ X. It follows by linearity that
Gle) = fw g du

for all X-measurable simple functions ¢.

Iffisa non'negative function in L,, let (,) be a monotone increasing
sequence of simple functions converging almost everywhere and in L,
to f. From the boundedness of G it is seen that G(f) = lim G(p,).
Moreover, it follows from the Monotone Convergence Theorem that

G() = lim [eug du = [ ds.

This relation holds for arbitrary fe L, by linearity.

' We r'10w turn to the o-finite case. If X =J F,, where (F,) is an
increasing s‘equence of sets in X with finite measure, the preceding
argument yields the existence of nonnegative functions g, such that

GUXFn) = J‘fXF,.gn df"

forallfin Ly. If m < nitis readily seen that g,(x) = g.(x) for almost
all x in F,,. In this way we obtain a function g which represents G.

If G is an arbitrary bounded linear functional on L,, Lemma 8.13
shows that we can write G = G* — G, where G* and G~ are bounded
positive linear functionals. If we apply the preceding considerations to
G* and G-, we obtain nonnegative measurable functions g*, g~
which represent G*,G~. If we set g =g* —g~, we obtain’the
representation

(8.10) 6 = [ red

for all fe L,. It will be left as an excrcise to show that |G| — [g]...
0D,

8.15 RIESZ REPRESENTATION TurOrEM. I/ (X, X, pu) iy an arbitrary
measure space and G is a bounded linear functional on 1 (X, X, ),
| < p < o0, then there exists a g in L,(X, X, ), where q — pl/(p 1),
such that equation (8.10) holds for all fin L,.  Moreover, |G| — [ gll,-
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In intuitive terms, a measure A is absolutely continuous with respect
{o a measure p in case sets which have small u-measure also have small
A-measure. At the opposite extreme, there is the notion of singular
measures, which we now introduce.

8.10 DEFINITION. Two measures A, . On X are said to be mutually
singular if there are disjoint sets A4, B in X such that X = AU B and
XA) = w(B) =0. In this case we write A | p.

Although the relation of singularity is symmetric in A and p, we shall
sometimes say that A is singular with respect to p.

8.11 LEBESGUE DECOMPOSITION THEOREM. Let X and n be o-finite
measures defined on a o-algebra X. Then there exists a measure A
which is singular with respect to p and a measure A\, which is absolutely
continuous with respect to p such that A=A + Ay. Moreover, the
measures A\, and A, are unique.

PROOF. Letv = A + psothatvisa o-finite measure. Since A and p
are both absolutely continuous with respect to v, the Radon-Nikodym
Theorem implies that there exist functions f, g in M *(X, X) such that

NE) = L fdv, WE)= Lgdv

for all Ein X. Let 4 ={x:gx) = 0}, and let B = {x: g(x) > 0},
sothat AN B =0,and X = AU B.
Define A, and A, for E in X by

M(E) = MEN A),
Since u(4) = 0, it follows that A, | p. To see that Ay < p, observe
that if w(E) = 0, then

M(E) = NE N B).

fea-e.
E

so that g(x) = 0 for v-almost all x in E. Hence w(EN B) = 0; since
AL v,
M(E) = NEN B) = 0.
Clearly A = A, + Ag, so the existence of this decomposition is affirmed.
To establish the uniqueness of the decomposition, use the observation
that if « is a measure such that ¢ < p, and « | p,thene =0. QE.D.

~
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RIESZ REPRESENTATION THEOREM

As another application of the Radon-Nikodym Theorem, we shall
presef)t theorems concerning the representation of bounded linear
functionals on the spaces L,, | < p < oo.

8.12‘ DEFINITION. A linear functional on L, = L, (X, X,u) is a
mapping G of L, into R such that

Glaf + bg) = aG(f) + bG(g)

for all a., bin Rand f,gin L,. The linear functional G is bounded if
there exists a constant M such that

IGNI < M| f],
forall fin L,. In this case, the bound or the norm of G is defined to be
(8.9 IGIl = sup{|G(N)] : fe Ly, | f], < 1}.

It is .a conseguence of the linearity of the integral and Holder’s
Inequa?nty that if ge L, (where ¢ = co whenp = landq = p/(p — 1)
otherwise) and if we define G on L, by

(8.10) G(f) = f 1z du,

then G is a linear functional with norm at most equal to | g|,(and it is
N . .
n exercise to prove that |G| = | g|,). The Riesz Theorem yields a
converse to this observation.
X Before Yve prove this theorem it is convenient to observe that any
01{n'cled ‘lmear functional on L, can be written as the difference of two
positive linear functionals (that is, functionals G such that G(f) > 0
for all fe L, for which £ > 0). |

h8.l3 L.EMMA. Let G be a bounded linear functional on 1I.,. Then
there exist two positive bounded linear functionals ', (;

G(f)y=G*(f) — G (f) forall fc L,.
PROOF. If f> 0 define G'(f) ~ sup{G(g) : gel,, Oy~ [}

Itisclear that G*(c¢f) = ¢ G'(f)fore = Oand / = 0. O« g, < f
then ! ;

such that

G(g1) + G(ga) = G(gy + g2) =~ G'(f, 1 1)),
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We employ the preceding construction for ¢ = 2", n€ N, to obtain

a sequence of functions we now denote by f,. Hence

(8.8) jﬂ@sxmsjﬁ@+rwn.
' E E

forallne N. Letm > n,and observe that

jﬂ@sMﬂsLA@+rwax

fn@snmsfﬂ¢+rwwx
E E
from which it is seen that

[-tae

for all Ein X. If we let E be the sets where the integrand is positive
and negative and combine, we deduce that

< 27" u(X),

J1s = gl e < 271w

whenever m >n. Thus (f,) converges in mean and in measure t;o‘,aé
function f. Since the f, belong to M+, it is clear from Theorem 7.

that we may require that fe M *. Moreover,

\jﬁ@—LﬁﬂsLm—ﬂwsfm—ﬂm

so that we conclude from (8.8) that
NE) = tim [ fud = [ i
E

for all E€ X. This completes the proof of the existence assertion of
the theorem in the case where both A and p are finite measures.

We claim that fis uniquely determined up to sets of p-measure zero.
Indeed, suppose that f, he M + and that

A@%=Lﬂm=Lh@
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forallEin X. LetE;, = {x: f(x) > h(x)} and £, = {x : f(x) < h(x)},
and apply Corollary 4.10 to infer that f(x) = h(x) p-almost everywhere.

We shall now suppose that A and p are o-finite and lct (X,) be an
increasing sequence of sets in X such that

A(X,) < oo, w(X,) < 0.

Apply the preceding argument to obtain a function /, in M ' which
vanishes for x ¢ X,, such that if E is a measurable subsct of X, then

M&=Lm¢

If n < m, then X, < X,,, and it follows that

f hn dIL = f h,,, d;L
E E

for any measurable subset £ of X,. From the uniqueness of A,, it
follows that h,(x) = h,(x) for p-almost all x in X, whenever m > n.
Letf, = sup {h,, ..., h,} so that (f,) is a monotone increasing sequence
in M* and let f = lim f,. If E€ X, then

Awﬂm=Lﬁ¢.

Since (E N X,) is an increasing sequence of sets with union E, it follows
from Lemma 3.3 and the Monotone Convergence Theorem 4.6 that

A@):ﬁmMEnxg=umprm

=Lf¢.

The p-uniqueness of fis established as before. 01D,

The function f whose existence we have established is often called

the Radon-Nikodym derivative of A with respect (o g, and 1w denoted by
dMdp. It will be seen in the exercises to have properties closely related
to the derivative. The reader should observe that this function 1s not

necessarily integrable; in fact, / i1s (p-cquivalent (o) an integrable
function if and only if A is a finite measure,
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pROOF. Let P, = {xe X : f(x) = 0} and N, = {xe X : f(x) < 0}.
Then X = P,U N, and P, N; = 0. If E€ X, then it is clear that
MEN P > 0and M(EN N,) < 0. Hence P;, N; is a Hahn decom-
position for A. The statement now follows. Q.E.D.

It was seen in Corollary 4.9 that if fis a nonnegative extended real-
valued measurable function and p is a measure on X, then the function
A defined by equation (8.6) is a measure on X. There is a very
important converse to this which gives conditions under which one
can express a measure A as an integral with respect to p of a non-
negative extended real-valued measurable function. It was seen in
Corollary 4.11 that a necessary condition for this representation is
that A(E) = O for any set E in X for which w(E) = 0. It turns out
this condition is also sufficient in the important case where A and p are
o-finite.

8.7 DEFINITION. A measure Aon X is said to be absolutely continuous
with respect to a measure p on X if E€ X and u(E) = 0 imply that
ME) = 0. In this case we write A <« p. A charge A is absolutely
continuous with respect to a charge p in case the total variation |A| of
X is absolutely continuous with respect to ||

The following lemma is useful and adds to our intuitive under-
standing of absolute continuity.

8.8 LEMMA. Let A and p be finite measures on X. Then AL p if
and only if for every € > 0 there exists a 8(c) > O such that E€ X and
w(E) < 8(c) imply that NE) < e.

prROOF. If this condition is satisfied and w(E) = 0, then NE) < ¢
for all ¢ > 0, from which it follows that ME) = 0.

Conversely, suppose that there exist an ¢ > 0 and sets E, € X with
w(E,) < 27" and MNE,) > e. Let F, = \Ji-n Ex, so that w(Fy) <
2-n+1and \(F,) > . Since (Fy) is a decreasing sequence of measurable
sets,

b (A F) = lim u(F) = 0,
A ﬁl F) = lim XF) > e

Ilence A is not absolutely continuous with respect to p. Q.E.D.
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8.9 RADON-NIKODYM THEOREM. Let X and p be o-finite measures
defined on X and suppose that A is absolutely continuous with respect to .
Then there exists a function fin M *(X, X) such that

(8.6) NE) = L fdu, EecX.

Moreover, the function f is uniquely determined p-almost everywhere.

* p v
PROOF We S]lall ﬁISt rove IhCOIelll 8.9 Ulldel tllb hyp()(hb\l\ tllull

If ¢ > 0, let P(c), N(c) be a Hahn decomposition of X for the charge
A — cp. If k € N, consider the measurable sets

A =N@©,  Ager = Nk + DU 4,.
=1
It is clear that the sets A4,., k € N, are disjoint and that

K . k
jL_)l N(jo) = U 4;.
It follows that ) =t

k-1 -
A = N\, NGo) = Niko) 0 7 Pli).
= =1
Hence if E is a measurable subset of A, then E < N(kc) and E <
P((k — 1)c) so that
8.7) (k — Dep(E) < ME) < kep(E).
Define B by
B=x\U 4,= ( PGo),
ji=1 i=1
so that B < P(kc) for all ke N. This implies that
0 < kew(B) < MB) € A(X) < +w

for all k € N, so that w(B) = 0. Since A << p, we infer that A(H) — 0,
Let f. be ('ieﬁncd by fo(x) = (k De for v A, and f,(v) — O fon
x € B. If E is an arbitrary mcasurable set, then /71w the union of the

disjoint sets EN B, EN A,., k ¢ N, so it follows from (K.7) that

J.Efcd,u < ME) < J; (fe v e)ydp = J [ odp v oep X))

3
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MNG) < 0, then AG) < — 1/(n, — 1) for sufficiently large k, con-
tradicting the fact that n is the smallest natural number such that
E\(E,V---VE) contains a set with charge less than — 1/n,. Hence,
every measurable subset G of E\ F must have A(G) > 0, so that E\ F
is a positive set for A. Since ME\ F) = NME) — XF) > 0, we infer
that P U (E\ F) is a positive set with charge exceeding o, which is a

contradiction.
Therefore, it follows that the set N = X\ P is a negative set for A,

and the desired decomposition of X is obtained. Q.E.D.

A pair P, N of measurable sets satisfying the conclusions of the
preceding theorem is said to form a Hahn decomposition of X with
respect to A. In general, there will be no unique Hahn decomposition.
In fact, if P, N is a Hahn decomposition for A, and if M is a null set
for A, then PU M, N\ M and P\ M, NU M are also Hahn decom-
positions for A. This lack of uniqueness is not an important matter

for most purposes, however.

8.3 LEmMmA. If Py, N, and Py, N, are Hahn decompositions for A,
and E belongs to X, then

MNE N P,) = NE N Py), ME N N,) = MEN Ny).
PROOF.  Since E N (P, \ Py) is contained in the positive set P, and in

the negative set Ny, then A(E N (Py \ P)) = 0 so that

ME N P) = NEN P, 0\ Py).

Similarly,
MENP) = NENP, N P,),

from which it follows that
MNE N Py) = NEN Py). Q.E.D.

8.4 DEFINITION. Let A be a charge on X and let P, N be a Hahn
decomposition for A. The positive and the negative variations of A are
the finite measures A*, A~ defined for Ein X by

(8.3) M(E) = NENP), A (E)=—MENN).
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The total variation of A is the measure |A| defined for £ in X by
IN(E) = M(E) + A~ (E).

I-t 1§ a consequence of Lemma 8.3 that the positive and negative
v‘anatlons. are well-defined and do not depend on the Hahn decomposi-
tion. It is also clear that

(8.4) ME)=MENP)+ NENN) =A"(E) — X (F).
We shall state this result formally.

h8.5‘JORDAN DECOMPOSITION THEOREM. If A is a charge on X, it is
; .e difference of two finite measures on X. In particular, X is the

ﬁerence of A* and X~. Moreover, if X = p — v where p,v are
finite measures on X, then ‘

(8.5) w(E) = A (E), wWE) > A (E)
forall Ein X.

. PROOF. The representation A = A* — A~ has already been estab-
lished. Since x and v have nonnegative values, then

A(E) = NENP) = w(ENP) — ENP)
S WENP) < u(E).

Similarly, A~(E) < »(E) for any E in X. Q.E.D

We have seen, in Lemma 5.2, that if a function f is integrable with
respect to a measure p on X, and if A is defined for E in X by

(8.6) XNE) = fE fdu,

lhef‘l /\ is a charge. We now identify the positive and negative
variations of A.

8.6 THEOREM. If fbelongs to L(X, X, ), and X is defined by equation
(8.6), then A\*, A~ and || are given for I in X by

AY(E) = J; [ dn, AN (L) [ [ dp,
e = [ 11
K




CHAPTER 8

Decomposition of Measures

In this chapter we shall consider the possibility of decomposing
measures and charges in various ways and shall obtain some very
useful results. First we shall consider charges and show that a charge
can be written as the difference of two finite measures.

We recall from Definition 3.6 that a charge on a measurable space
(X,X)is a real-valued function A defined on the o-algebra X such that
A(©) = 0 and which is countably additive in the sense that

s

N U E) = 2 NE)

n=1
for any disjoint sequence (E,) of setsin X. The reader can ea.sily che.ck
the proofs of Lemmas 3.3 and 3.4 to show that if (E,) is an increasing

sequence of sets in X, then

*) E,) = lim NEy),
@.1) N U, Ex) = lim NE»)
and if (F,) is a decreasing sequence of sets in X, then
A F.) = lim A(F,).
(8.2) /\( N, ) (F»)

8.1 DerNITION. If Ais a charge on X, then a set P in X is said to l?e
positive with respect to Xif M(E N P) > 0 for any Ein X. Aset Nin

X is said to be negative with respect to Xif M\EN N) < 0 for any E in
X. A set M in X is said to be a null set for A if A(E N M) = 0 for

any Fin X.

Ho
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It is an exercise to show that a measurable subset of a positive set is
positive and that the union of two positive sets is a positive set.

8.2 HAHN DECOMPOSITION THEOREM. [If A is a charge on X, then
there exist sets P and N in X with X = PUN, PN — 0, and such
that P is positive and N is negative with respect to A.

PROOF. The class P of all positive sets is not empty since it must
contain 0, at least. Let « = sup {A(4) : 4 € P}, let (A4,) be a sequence
in P such that lim A(4,) = «, and let P = | Jy., 4,. Since the union
of two positive sets is positive, the sequence (A4,) can be chosen to be
monotone increasing, and we shall assume that this has been done.
Clearly P is a positive set for A, since

©

ME N P) = ,\(Er\"[:J1 42) = (U (En 4)) = lim NE N 4,) > 0.

n=1

Moreover, « = lim A(4,) = A(P) < .

We shall now show that the set N = X'\ P is a negative set. If not,
there is a measurable subset E of N with A(E) > 0. The set £ cannot
be a positive set, for then P U E would be a positive set with A(P U E) >
«, contrary to the definition of «. Hence E contains sets with negative
charge; let n; be the smallest natural number such that E contains a set
E, in X, such that A(E}) < —1/n;. Now

ME\ E;) = NE) — NEy) > AE) > 0;

however, E\ E, cannot be a positive set, for then P, = PU (E\ E))
would be a positive set with A(P;) > «. Therefore E\ E, contains
sets with negative charge. Let n, be the smallest natural number such
that E \ E, contains a set E, in X such that A\(E;) < —1/n,.  As before
I\ (E, VU E,) is not a positive set, and we let ny be the smallest natural
number such that E\ (E; U E;) contains a set [, in X such that
ME;) < —1/nz. Repeating this argument, we obtain a  disjoint
sequence (E,) of sets of X such that A(£,) < 1/m,. Lett"— U )" 1,
so that
MNFY = > ME) = >«

et
k=1 k—l""

which shows that I/n, — 0. 1f & is a measurable subset of 27\ /" and
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the set [0, 8]. However, show that there does not exist a set of measure
zero, on the complement of which (f) is uniformly convergent.

7K. Show that the sequence in Exercise 7.B converges almost
uniformly but not in L.

7.L. Show that the sequence in Exercise 7.D converges everywhere,
but not almost uniformly.

7.M. Let f, = nxp,1- Show that the hypothesis that the limit
function be finite (at least almost everywhere) cannot be dropped in
Egoroff’s Theorem.

7.N. Show that Fatou’s Lemma holds if almost everywhere con-
vergence is replaced by convergence in measure.

7.0. Show that the Lebesgue Dominated Convergence Theorem
holds if almost everywhere convergence is replaced by convergence in
measure.

7.P. If ge L, and |f;| < g, show that conditions (ii) and (iii) of the
Vitali Convergence Theorem 7.13 are satisfied.

7.Q. Let (X, X, p) be a finite measure space. If fis an X-measurable
function, let

(IS
1 = [ %

Show that a sequence (f) of X-measurable functions converges in
measure to fif and only if r(f, — f) —> 0.

7.R. If the sequence (f,) of measurable functions converges almost
everywhere to a measurable function f and ¢ is continuous on RtoR,
then the sequence (g ° f,) converges almost everywhere to @ o f.  Con-
versely, if ¢ is not continuous at every point, then there exists a sequence
(f,) which converges almost everywhere to f but such that (¢ ° fr) does
not converge almost everywhere to ¢ ° f-

7.S. If ¢ is uniformly continuous on R to R, and if (f,) converges
uniformly (respectively, almost uniformly, in measure) to f, then
(¢ © f;) converges uniformly (respectively, almost uniformly, in measure)
to @ of. Conversely, if ¢ is not uniformly continuous, there exists a
measure space and a sequence (f3) converging uniformly (and hence
almost uniformly and in measure) to f but such that (@ o f;) does not
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converge in measure (and hence not uniformly or almost uniforml
to @ o f. »
7.T. Let (z.Y, X, ) be a finite measure space and let 1 < p <
Let ¢ be continuous on R to R and satisfy the condition: () there exist;
K > 0 such that |p(#)| < K|¢| for || > K. Show that ¢ - / belongs to
L, fo? eachfe L,. Conversely, if ¢ does not satisfy (), thAcn there is a
:'znztlon Sin L, on a finite measure space such that ¢ o f does not bcloing
-
‘ 7.U..If (f») converges to fin L, on a finite measure space, and if ¢
is contmu(?us and satisfies condition (x) of Exercise 7.T, then (¢ o f,)
converg'es in L, to pof. Conversely, if condition (*) is not sutisﬁé&
Fhere exists a finite measure space and a sequence ( f,) which C(mvcrgc;
in L, to f but such that (¢ o £;) does not converge in L, to ¢ o f. ‘
' 7.V. Let (X, X, n) be an arbitrary measure space. Let (p. be con-
tinuous on R to R and satisfy: (*x) there exists K > 0 such that
lp(t)] < K|t| for all te R. If feL,, then o f belongs to L,. Con-
verse!y, if @ does not satisy (**),%there exists a measure spa:e and a
function f€ L, such that ¢ o f does not belong to L,.

' 7W If ( /») converges to fin L, on an arbitrary measure space, and
if g is continuous and satisfies (**), then (g o f;) converges to ¢ o fin L
Conversely, if ¢ does not satisfy (+x), there exists a measure space andpa

sequence (f,) which converges in L, to f, but such that (¢ - f;) does not
converge in L, to ¢ o f. '
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We conclude this chapter with a set of necessary and sufficient
conditions for L, convergence. The reader will observe that the
second and third conditions are automatically fulfilled when the
sequence is dominated by a function in L,. .

7.13 ViTALl CONVERGENCE THEOREM. Let (f,) be a set.zu.ence in
L(X,X,p), 1 Sp <™. Then the following three c.ondltzons are
necessary and sufficient for the L, convergence of (fo) 1o f

i erges to f in measure.

((li)i) (g))r Z‘;’:;! eg> 0 t{:ere is a set E.€ X with p(E

if Fe X and FN E;= 0, .hen

f |fulpdp <& forallne N.
F

) < +0o such that

(iiiy For each € > O there is a 8(e) > 0, such that if Ee X and
u(E) < &), then
'[ |ful?du < € for allneN.
E

PROOF. It was seen after Definition 7.5 that L, convergence implies
convergence in measure. The fact that L, convergence of the ( 1)
implies (ii) and (iii) is not difficult and is left to the reader (see Exercises

6.R and 6.5). N .
We shall now show that these three conditions imply that (f)

converges in L, to f. If € > 0, let E, be as in (ii) and let F=X\E
If the Minkowski Inequality is applied to f, —fu=(a — f)xs. +
fuXp — fm xp, We obtain

1 = fuls < {, 1o = 1P a4 2

forn,meN. Nowleta = e[w(E,)] ? and let Hyp = {xe 'E, 2 fa(x)
— fu(¥)| = o). Inview of (i), there exists a K(e) such that if n, m 2

K(c), then p(Hnm) < 8(). Another application of the Minkowski

Inequality together with (iii), gives

([t (], 1n-nre)

P

el e

< ofW(EJPP + & + & = 3,
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when n,m > K(¢). On combining this with the earlier inequality,
we infer that the sequence (f;,) is Cauchy and hence convergent in L,,.
Since we already know that (f,) is convergent in measure to f, it
follows from the uniqueness in Corollary 7.7 that (f,) converges to
fin L,. Q.E.D.

EXERCISES

In these exercises (R, B, A) denotes the real line with Lebesgue
measure defined on the Borel subsets of R. Moreover, | < p < .

7.A. Let f, = n7""x... Show that the sequence (f,) converges
uniformly to the O-function, but that it does not converge in L, (R, B, A).
7.B. Let f, = n xumn2m- Show that the sequence (f,) converges
everywhere to the O-function but that it does not convergein L, (R, B, ).

7.C. Show that both of the sequences in Exercises 7.A and 7.B
converge in measure to their limits.

7.D. Let f, = Xmn+1- Show that the sequence (f,) converges
everywhere to the O-function, but that it does not converge in measure.

7.E. The sequence in 7.B shows that convergence in measure does
not imply L,-convergence, even for a finite measure space.

7.F. Write down a subsequence of the sequence in Example 7.4

which converges almost everywhere to the O-function. Can you find
one which converges everywhere ?

7.G. If a sequence (f,) converges in measure to a function f, then
every subsequence of (f;) converges in measure to f. More generally,
if (f;) is Cauchy in measure, then every subsequence is Cauchy in
measure.

7.H. If a sequence (f,) converges in L, to a function /, and a sub-
sequence of (f,) converges in L, to g, then /= ga.c.

7.1. If (f;) is a sequence of characteristic functions of sets in X, and
if (f,) converges to fin L,, show that f'is (almost everywhere equal (o)
the characteristic function of a set in X.

7.J. Show that the sequence (f,) in Exercise 7.8 has the property
that if 8 > 0, then it is uniformly convergent on the complement of
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converse is false (see Exercise 7.L). However, it is a remarkable and
important fact that if the functions are real-valued and if w(X) < +o,
then almost everywhere convergence does imply almost uniform
convergence.

7.12 EGOROFF’S THEOREM. Suppose that p(X) < +0© and that (f,)
is a sequence of measurable real-valued functions which converges almost
everywhere on X to a measurable real-valued function f. Then the
sequence (f,) converges almost uniformly and in measure to f.

PROOF. We suppose without loss of generality that (f,) converges at
every point of X to f. Ifm,ne N, let

By = O {xe X3 1500~ £091 > )

so that E,(m) belongs to X and E,..(m) < E(m). Since fo(x)—> f(x)
for all x € X, it follows that

(\Edm) =0.

Since w(X) < +oo, we infer that ,u.(E,,(m))—»O as n— +oo. If

8 > 0, let k,, be such that p.(Ekm(m)) < §/2™andlet E, = Ue. 1 Ek,(m),
so that E, € X and pu(E;) < 8. Observe that if x ¢ E;, then x ¢ E;, (m),
so that

1
/) — ] <
for all k > k,. Therefore (fi) is uniformly convergent on the

complement of E,. Q.E.D.

It is convenient to have a table indicating the relations between the
various modes of convergence we have been discussing. Modifying
the idea in Reference [10], we present three diagrams relating almost
everywhere convergence (denoted by AE), almost uniform con-
vergence (denoted by AU), convergence in L, (denoted by L,), and
convergence in measure (denoted by M). It is understood that in
discussing L, convergence, it is assumed that the functions belong to
/... Diagram 7.1 pertains to the case of a general measure space. A
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AE <
~
A S~ //,AU
| ~a /// *
I \\\ // '
~ -
| ~o - |
| o< |
- ~—
| /// \\ |
| /// ~ |
| P ~ |
- ~
Lp ~a I
> M

Diagram 7.1 General case

solid arrow signifies implication; a dashed arrow signifies that a sub-
fseq'uence converges in the indicated mode. The absence of an a;row
indicates that a counterexample can be constructed. Diagram 7.2
relates to the case of a finite measure space. In view of Egoroﬂ"‘ ’s

AE
A
I
|
|
|
|

3
/
\.*»

| _—~

Lp

e ——
—_——————

i

Diagram 7.2 Finite measure space

Theorem two implications are added. In Diagram 7.3, we assume
Fhat Fhe .sequence (f») is dominated by a function g in L,. Here three
implications are added.

We leave it as an exercise to verify that all the implications indicated

in these diagrams hold, and that no o .
. ’ ther ones are val ;
additional hypotheses. RS WRIC iithout

AE .
4{\\ AU
I > 4
]
| |
i |
. |
| |
1= |

L, - MI

Diagram 7.3  Dominated convergence
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Since (gy) is a subsequence of (f;), it follows (see Exercise 7.G) that it
converges in measure to f. By Theorem 7.6 there is a subsequence
(h,) of (gx) which converges almost everywhere and in measure to a
function 4. From the uniqueness part of Corollary 7.7 it follows that
h = fa.e. Since (h,)converges almost everywhere to fand is dominated
by g, Theorem 7.2 implies that A, — f|,— 0. However, this
contradicts the relation (7.7). Q.E.D.

ALMOST UNIFORM CONVERGENCE

In the proof of Theorem 7.6 we constructed a sequence (&) of
measurable real-valued functions which was uniformly convergent on
the complement of sets which have arbitrarily small measure. At first
mention this sounds equivalent to uniform convergence outside a set of
zero measure, but it is not equivalent (see Exercise 7.J).

7.9 DerINITION. A sequence (f5) of measurable functions is said to
be almost uniformly convergent to a measurable function f if for each
§ > 0 there is a set E, in X with u(Es) < § such that (f,) converges
uniformly to f on X\ E;. The sequence (f,) is said to be an almost
uniformly Cauchy sequence if for every 8 > 0 there exists a set E,in X
with u(E,) < & such that (f,) is uniformly convergent on X\ E;s.

The reader is warned that the terminology (in addition to being
unpleasant) is slightly at variance with the earlier use of the modifier
“almost.” It is clear that almost uniform convergence is implied by
uniform convergence, but it is not hard to see that almost uniform
convergence does not imply this stronger mode.

7.10 LemmA. Let (f,) be an almost uniformly Cauchy sequence.
Then there exists a measurable function f such that (f.) converges almost
uniformly and almost everywhere to f.

prROOF. If ke N, let E, € X be such what w(E,) < 2% and (fo) 1s
uniformly convergent on X\ E. Let F, = U2« E;, so that Fi€ X
and u(F,) < 2-%"P. Note that (f,) converges uniformly on X'\ F, <
X \ E, and define g, by

gk(x) = 1imfn(x)a x¢ Fk’
=0, xeF,.
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We observe that the sequence (Fy) is decreasing and that if F = (") Fy,
then Fe X and u(F) = 0. If h < k, then g,(x) = g.(x) for all x¢ F},.
’I"hcfrefore, .the sequence (g,) converges on all of X to a measurable
limit function which we shall denote by f. If x¢ I, then f(x) =
gk(x) = lim fi(x). It follows that (f;) converges to fon X\ F, .so that
(f,) converges to f almost everywhere on X.
X To see that the convergence is almost uniform, let € > 0, and let K
e.so large that 2-%-Y < e. Then w(Fx) < e, and (f,) converges
uniformly to gx = fon X\ Fy. Q.E.D

The next result relates convergence in measure and almost uniform
convergence.

7.11
Wt THEOREM. If a sequence (f,) converges almost uniformly to f,
en it converges in measure. Conversely, if a sequence (h,) converges in
measure to h, then some subsequence converges almost uniformly to h.

PROOF. Suppose that (f;) converges almost uniformly to f, and let
o and e be positive numbers. Then there exists a set E in, X with
}L(E,_)'< e such that (f;) converges to f uniformly on X \;E . There-
fore, if n is sufficiently large, then the set {x € X : | f,(x) — Ef(x)] > o}
must be contained in E,. This shows that (f;) converges in mea;ure

to f.

Conversely, suppose that (4,) converges in measure to 4. It follows
from Theorem 7.6 that there is a subsequence (g;) of (h,) which con-
verges in measure to a function g and the proof of Theorem 7.6 actually
§hows that the convergence is almost uniform. Since (g,) converges
’m measure to both 4 and g, it follows from Corollary 7.7 that h = ga c\
Therefore the subsequence (g;) of (4,) converges almost uniformly to l:

Q1D
It f.ollows from the Theorem 7.11 that if a sequence converges in /
then it l?as a subsequence which converges almost uniformly. (‘m';t
versely, it may be seen (see Exercise 7.K) that almost uniform con
vFrgcnce does not imply convergence in £, in general, although it does
il the convergence is dominated by a functionin 1., (apply I'lumlu-m 7.xj

One of the consequences of Lemma 7.10 s that almost unil'orm.

convergence implies almost everywhere convergence.  In general, the
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PROOF. Select a subsequence (gx) of (fy) such that the seﬁ E. =
{xe X :|8e+s1(®) — g(x)| = 27% is such that w(Ey) < 27%. Let
F, = Uk E; so that Fee X and p(F) < 2% 0. Ifi>j2 k and
x ¢ Fy, then

1.6) |g(x) — &) < |80 — g+ F |85+1(%) — &)

! L.
<F+"'+§;<21_1.

Let F = (-1 Fi so that Fe X and u(F) = 0. From the argument
just given it follows that (g,) converges on X \ F. If we define f by

f(x) = limg(x), x¢F,
=0, x€F,

then (g;) converges almost everywhere to the measurable' real-valuefi
function f. Passing to the limit in (7.6) as i — 00, We infer that if
j > k and x ¢ Fy, then

1 1
If(x) - gl(x)l < E]__i- < -27-_—1 .

This shows that the sequence (g;) converges uniformly to f on the
complement of each set Fj. N

To see that (g;) converges in measure to f, let «, € be positive real
numbers and choose k so large that w(F) < 27%"V < inf (a, ). If
j = k, the above estimate shows that

e X: [f() - g > o} € Fe X : [fX) — gl > 277

c F..

Therefore, p.({xe X:|f(x) — gx)| 2 a}) < w(F) < ¢ for all j > k,
so that (g,) converges in measure to f. Q.E.D.

77 CoROLLARY. Let (f;) be a sequence of measurable real-valued
functions which is Cauchy in measure. Then there is a measurable reaI'-
valued function f to which the sequence converges in measure. This
limit function f is uniquely determined almost everywhere.
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PROOF. We have seen that there is a subsequence (f,,) which con-

verges in measure to a function f. To see that the entire sequence
converges in measure to f, observe that since

) = £ < 1) = o] + [fun) — 0],
it follows that
(Fe X 1) ~ 0] > € {xe X 1)~ fu] > 5
U{xeX: 10 ~ A0l > 5}
The convergence in measure of (f;) to f follows from this relation.

Suppose that the sequence (f,) converges in measure to both fand g.
Since

[f(x) — g(x)| < |f(x) = fa®)] + [falx) — g(x)|,
it follows that

e X:|f) - g > e < {xe X: 1) — £ > %}
U {xe X: i) — g)| > %}

so that
wlxe X 2 () - g¥)| > a}) = 0
for all « > 0. Taking « = 1/n, n€ N, we infer that f = g, a.e. QE.D.

It has been remarked that convergence in L, implies convergence in
measure. In general, convergence in measure does not imply con-
vergence in L, (see Exercise 7.E). However, this implication does hold
when the convergence is dominated.

7.8 THEOREM. Let (f,) be a sequence of functions in L, which con-
verges in measure to f and let g € L, be such that

[fa(®)] < g(x), aec.
Then f€ L, and (f,) converges in L, to f.

PROOF  If (f;) does not converge in 1., to f, there exist i subsequence
(g,) of (f,) and an € > 0 such that

(7.7 lge —fl, > ¢ for ke N




- —

-

'
.

68 The Elements of Integration
7.3 CoROLLARY. Let p(X) < +0, and let (f,) be a sequence in L,
which converges almost everywhere to a measurable function f. If there

exists a constant K such that
(7.3) | fa¥)| < K, xe X, neN,

then f belongs to L, and (f,,) converges in Ly 10 I
prOOF. If p(X) < +0, the constant functions belong to L,. QED.

It might be suspected that convergence in L, implies almost c.:very-
where convergence, but this is not the case. In fact, we shz%ll give an
example of sequence (f,) which converges in L, to 2.1 function f, but
such that (f(x)) does not converge to f(x) for any x 1n X

7.4 ExampLe. Let X = [0, 11, X=B, and let A be Lebesgue

measure. We shall consider the intervals [0, 1], [0, 3], i, 11, [0, 3],
12

H’a %]? [&v l]’ [0, Ha [*a i]: B’: %]’ [%9 1]a [0’ 'Ha [5’ Sl e

Let f, be the characteristic function of the nth interval on this list and
let f be identically zero. If n > mm + D/2(=1+ 2 +-~~+.m),
then f, is a characteristic function of an interval whose measure 1S at

most 1/m. Hence

I = £l = fUfe =11
= ff,.d)\ < 1/m.

Therefore (f,) converges in L,
[0, 1], then the sequence (fo(x)

I’s and another subsequence consisting only of 0O’s. Therefore, the

] 0,1]. (It may be
nce (f,) does not converge at any point of [0, .
clier o lect a subsequence of (fz) which

observed, however, that one can se

converges to f.)

CONVERGENCE IN MEASURE

Although convergence in
convergence, it does imply an

interest.

to f. However, if x is any point of
) has a subsequence consisting only of

L, does not imply almost everywhere
other type of convergence that is often of
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7.5 DEFINITION. A sequence ( f;) of measurable real-valued functions
is said to converge in measure to a measurable real-valued function f
in case

(7.4) ,.ILT, p(fxe X 1 [fulx) = f(0)| 2 «f) =0

for each « > 0. The sequence (f;) is said to be Cauchy in measure
in case

(7.5) lim_ p((x e X 1 |ful®) = fu0)] = a}) = 0
for each « > O.

If (f,) converges uniformly to f, then the set
{xeX:|fix) = f(¥)| > }

is empty for sufficiently large n. Hence, uniform convergence implies
convergence in measure. It is not difficult to show (see Exercise 7.D)
that pointwise convergence (and therefore almost everywhere con-
vergence) need not imply convergence in measure, unless the space X
has finite measure (see Theorem 7.12). We observe, however, that
convergence in L, does imply convergence in measure. Indeed if
Ex@) = {xe X : |f4() = ()| > o}, then

[l =sipdu> [ 1f = fr e > @ ().
Since « > 0, it follows that | f, — f|, — O implies that u(Ey(«)) -0
as n— o0,

The reader can readily verify that Example 7.4 also shows that a
sequence can converge in measure to a function but not converge at
any point. Despite that fact, we shall now prove a result due to
F. Riesz that implies that if a sequence (f,) converges in measure o /,
then some subsequence converges almost everywhere to /. Actually
we shall prove somewhat more than that.

7.6 THEOREM. Let (f,) be a sequence of measurable real-valued
functions which is Cauchy in measure. Then there is a subsequence
which converges almost everywhere and in measure (o a measurable
real-valued function f.
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there exists a natural number N(e, x), such that if n > N(e, x), then
1fu(x) = f)] < e.

It is obvious that uniform convergence implies pointwise convergence,
that pointwise convergence implies almost everywhere convergence, and
it is easily seen that the reverse implications do not hold. (Of course,
if X consists of only a finite number of points, then pointwise con-
vergence implies uniform convergence; if the only set with measure
zero is the empty set, then almost everywhere convergence implies
pointwise convergence.)

CONVERGENCE IN L,

We now recall the notion of convergence in L, which was introduced
in Chapter 6. We remark that an element in L, is an equivalence class
of functions which are real-valued and whose pth powers are integrable.
However, by exercising some caution, we may regard an element of L,
as being a real-valued measurable function.

A sequence (f,) in L, = L,(X, X, p) converges in L, to f€ L,, if for
every ¢ > 0 there exists a natural number N(¢) such thatif n > N (e),
then

15— 11 = {15 fpdef <

In this case, we sometimes say that the sequence (f.) converges to f in
mean (of order p).

A sequence (f,) in L, is said to be Cauchy in L,, if for every ¢ > 0
there exists a natural number N(¢) such that if m, n > N(¢), then

1 = ol = {115 —pl ) <.

We have seen in Theorem 6.14 that if (f,) is Cauchy in L,, then there
exists an f'€ L, such that (f;) converges in L, to f.

The relationship between convergence in L, and the other modes of
convergence that we have introduced is not so close. It is possible
(sce Exercise 7.A) for a sequence (f,) in L, to converge uniformly on X
(and therefore pointwise and almost everywhere) to a function fin L,,
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but not converge in L,. However, if u(X) < +oco0, this cannot be
the case.

' 7.1 Tl*‘lEOREM. Suppose that u(X) < +oo and that (f,) is a sequence
in L, which converges uniformly on X to f. Then f belongs to L, and the
sequence (f,) converges in L, to f.

PROOF. Let € > 0 and let N(g) be such that |f,(x) — f(x)| < e
whenever n > N(¢) and xe X. Ifn > N(e), then ‘

(1) 1 = £y = {1560 = el e}

1/p
< {fs dy} — (X,

so that (f,) converges in L, to f. Q.E.D

I.t is Possible (see Exercise 7.B) for a sequence (f,) in L, to converge

pointwise (and therefore almost everywhere) to a function fin L,, but
. r’

not converge in L, even when u(X) < +0o. However, if the sequence

|sl dominated by a function in L,, then the L, convergence does take
place.

7.2 THEOREM. Let (f,) be a sequence in L, which converges almost
everywhere to a measurable function f. If there exists a g in L, such that

(1.2) Ifix)] < g(x), xe€eX, neN,
then f belongs to L, and (f,) converges in L, to f.

PROOF. In view of inequality (7.2), it follows that |f(x)| < g(x)

u-lmost everywhere. Since ge L,, it follows from Corollary 5.4 that
fcL,. Now

| fa(x) — f(0)]” < [2g(x)), ae.,

:md since lim |f,(x) — f(x)|* = 0, a.e., and 2"g" belongs to 1., it
follows from the Lebesgue Dominated Convergence Theorem 5.6 that

lim J' o = f]7 dy ~ 0.

I'herefore (f,) converges in L, to f. Q.E.D
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6.S. Let f,, B, be as in the Exercise 6.R, and suppose that (f3) is 'a
Cauchy sequence. If € > 0, then there exists a 8(c) > O such that if
Ee X and w(E) < 8(e), then B, (E) < ¢ for all ne N. (Hint: Use
Corollary 4.11.)

6.T. If fe L(X, X, p), then |fx)| < |[f]le for almost all x. More-
over, if A < |f]l», then there exists a set E € X with u(E) > 0 such

that | f(x)| > A4 for all x€ E.

6.U. IffeL,,1 < p < o, and g € L.,, then the product fg € L, and
I 7glls < [fl:08le- .

6.V. The space L,(X, X, p) is contained in L,(X, X, ) if and only
if p(X) < 0. Ifp(X) =1 and fe L, then

7o = lim 1/l

CHAPTER 7

Modes of Convergence

We have already had occasion to mention four types of convergence
of a sequence of measurable functions: pointwise convergence, almost
everywhere convergence, uniform convergence, and convergence in
L,. There are two other notions of convergence that are of importance
in dealing with measurable functions. We shall introduce these in this
chapter and give interrelations between the various modes.

For convenience, we shall restate the definitions. In this chapter we
shall consider only real-valued functions defined on a fixed measure space
(X, X, ). In some applications it is necessary to consider extended
real-valued functions, but this can usually be done by modifying the
present discussion. In addition we shall limit our attention to L, for
I < p < o0, since the convergence L, requires a special examination
which is usually quite direct. Thus it will be understood that p is
limited to these values.

The sequence (f,) converges uniformly to f if for every ¢ > O there
cxists a natural number N(e) such that if n > N(ec) and x X, then
/) = f)] < e

The sequence (f,) converges pointwise to / il for cevery € - 0 and
\ ¢ X there is a natural number N(e, x), such that if n = N(e, v), then
/x) = f] < e

The sequence (f,) converges almost everywhere (o /il there exists a
set M in X with w(M) = 0 such that for every ¢ - O and xc X\ M

65
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6.C. Let N be a norm on a linear space V and let d be defined for
u.ve Vbydu,v)=Nu-—"). Show that d is a metric on V; that
is, (i) d(u,v) > Oforallu,ve V; (i) d(u, v) = 0 if and only if u = v;
(iii) d(u, v) = d(v, w); (iv) d(u,v) < d(,w) + d(w, v).

6.D. If feL\(X, X, p) and € > 0, then there exists a simple X-
measurable function @ such that |f — @[ <. Extend this to Ly,
1 < p < . Isthis true for L,?

6.E. If feL,, 1 <p < o, and if E={xeX:|f(x)| # 0}, then
E is o-finite.

6.F. If feL, and if E, = {x€ X: | f(x)| = n}, then w(E,) — 0 as
n—o.

6.G. Let X = N, and let p be the counting measure on N. If fis
defined on N by f(n) = 1/n, then f does not belong to L,, but it does
belong to L, for 1 < p < . [Alternatively, let X = R, X = B, and
let » be Lebesgue measure and define g(x) = 0 for x <1 and g(x) =
1/x for x > 1.]

6.H. Let X = N, and let A be the measure on N which has measure
1/n? at the point n. (More precisely M(E) = 2. {1/n* : n€ E}.) Show
that A(X) < +o0. Let fbe defined on X by f(n) = Vn. Show that
feL,ifandonlyif I < p < 2. [For a similar example, let X' = 0,1
with Lebesgue measure, and consider g(x) = 1 [Vx.]

6.1. Modify the Exercise 6.H to obtain a function on a finite measure
space which belongs to L, if and only if 1 <p < Po-

6.J. Let (X, X, p) be a finite measure space. If f is X-measurable,
let E, ={xeX:(n—1)< | f(x)| < n}. Show that feL, if and
only if

z nf"(En) < to.
n=1

More generally, fe L, for 1 < p < @, if and only if

NMs

n? u(E,) < +oo.

n=1

6.K. If (X, X, p) is a finite measure space and feL,, then feL,
for | < r < p. (Hint: Use Exercise 6.J or the inequality |f|" < 1 +
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|f|?.) Apply Holder’s Inequality to |f|"in L,, and g = 1 to obtain
the inequality

1Al < 1Sl w(X)*,

where s = (1/r) — (1/p). Therefore, if u(X) = 1, then | f], < [ f],.

6.L. Suppose that X = N and p is the counting measurc on V. If
feL,, then fe L,with1 < p <s < oo,and |f], < [/,

6.M. Let X = (0, ), let p be Lebesgue measure on X, and let
f(x) = x"V%(1 + |logx|)~*. Then feL,if and only if p = 2.

6.N. Let (X, X, n) be any measure space and let f belong to both
L, and L,,, with 1 < p; < p, < . Prove that fe L, for any value
of p such that p; < p < p..

6.0. Let 1 < p < o0, and let (1/p) + (1/g) = 1. It follows from
Holder’s Inequality that if fe L,, then

[ de < 111,

for all g € L, such that | g|l, < 1. Iff # 0, define g, on X by go(x) =

c[signum f(z)]|f(z)[P~!, where ¢ = (|f]l,)""¢. Show that g€ L,
that | goll; = 1, and that

|[ 70| = 171,

6.P. L.et feL (X,X,n), 1 <p <o, and let e > 0. Show that
there exists a set E. € X with u(E,) < +oo such that if Fe X and
FNE,=0,then |fxsl, <.

6.Q. Let f,eL(X,X,p), 1 <p < o0, and let B, be defined for

I'e X by
gE) = {[ 1A au} "

Show that |By(E) — Ba(E)| < | fu = fulls- Hence, il (£,) is a Cauchy
sequence in L,, then lim B,(E) exists for cach £ ¢ X.

6.R. Let f;, B, be as in Exercise 6.Q. I (/,) 15 a Cauchy sequence
and € > 0, then there exists a set £, ¢ X with u(F,) - o such that if
}'c Xand FNE, = 0, then B(F) < eforall ne N.
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implics that f€ L,. Since |f — gl” < 27 g7, we infer from the
Dominated Convergence Theorem that 0 = lim If — 8kllps SO that
(g,) converges in L, to f.

In view of (6.8), if m 2 M(e) and k is sufficiently large, then

[ - gt <2

Apply Fatou’s Lemma to conclude that
[10 = 11 s < timinf 1 - gt < 2
k-

whenever m = M(e). This proves that the sequence (f,) converges to
fin the norm of L,. Q.E.D.

A complete normed linear space is usually called a Banach space
Thus the preceding theorem could be formulated: the space L, is a
Banach space under the norm given in (6.3).

THE SPACE Lo

We shall now introduce a space which is related to the L;-Spaces.

6.15 DEeFINITION.  The space L, = Lo(X, X, 1) consists of all the
equivalence classes of X-measurable real-valued functions which are
almost everywhere bounded, two functions being equivalent when they
are equal p-almost everywhere. If fe L. and N e X with w(N) =0,
we define

S(N) = sup {[f()| : x¢ N}

and
(6.10) Ifle = inf {S(N) : NeX,wN) = 0}.
An element of Lo is called an essentially bounded function.

It follows (see Exercise 6.T) that if f€ La, then |f(x)| < I flle for
almost all x. Moreover, if 4 < |fl., then there exists a set E with
positive measure such that | f(x)| = A4 for xe E. Ttisalso clear that
the norm in (6.10) is well-defined on Le .
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6.16 THEOREM. The space Lo is a complete normed linear space
under the norm given by formula (6.10).

| pROOF. It is clear that L is a linear space and that |fll. = 0,
10l = 0, and |lof || = e |fllw- If |fle =0, then there exists a
set N, € X with u(N,) = 0 such that | f(x)| < 1/k for = ¢ Nj. If we put
N = |J@-1 Ni, then NeX, p(N) =0, and |f(x)| = 0 for x¢N.
Therefore, f(x) = 0 for almost all x.
If f,g € L, there exist sets Ny, Ny in X with u(N,) = p(Nz) = 0

such that

o) < Ifle for x¢N,

lg)| < |lglo for x ¢ N,.

Therefore | f(x) + gX)| < [fll» + lgle for x¢(NyV N,), from
which it follows that | f + glle < [fl= + lgleo-

It remains to prove that Lo is complete. Let ( f.) be a Cauchy
sequence in Lo, and let M be a set in X with p(M ) = 0, such that
1] < | falle for x ¢ M,n=1,2,...,and also such that |fn(x) —
()] € |fa = fullw for all x¢ M, n, m=1,2,.... Then the
sequence (fy) 18 uniformly convergent on X\ M, and we let

fG) =limf(x), x¢M,

=0, xeM.
It follows that fis measurable, and it is easily seen that || fo — fl= — 0.
lence Lo, is complete. Q.E.D.
I'XERCISES

0.A. Let C[0,1] be the linear space of continuous functions on
|0, 1] to R. Define No for fin C[0, 1] by No(f) = |f(0)]. Show that
N, 1s a semi-norm on clo, 1].

0.B. Let C[0, 1] be as before and define N, for fin C[0, 1] to be the
itiemann integral of | f| over [0, 1]. Show that Ny defines anorimon
o1, If fyis defined for n > 1 to be equal to 0 for 0« x <
(I 1/m)/2, to be equal to | for 4 < x < 1, and to be lincar for
(1 I/n)/2 < x <}, show that (/) is a Cauchy sequence, but that it
does not converge relative to N, to an ¢lement of (0, 1].
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|/ + h|* ‘e L,. Hence we can apply Holder’s Inequality to infer that

[urt17+ wp=rda < 111, {11 + Hio- )
= "f“p If+ h|,”.

If we treat the second term on the right in (6.7) similarly, we obtain

If + hlo> < 1Sl If + hl" + DAl 1S + Al5"
= {Ifl» + lAls} [f+ Al5"

If A= |f+ h|, =0, then equation (6.6) is trivial. If 4 # 0, we
can divide the above inequality by A?/; since p — p/q = 1, we obtain
Minkowski’s Inequality. Q.E.D.

It is readily seen that the space L, is a linear space and that formula
(6.3) defines a norm on L,. The only nontrivial thing to be checked
here is the inequality 6.1(iv) and this is Minkowski’s Inequality. We
shall now show that L, is complete under this norm in the following
sense.

6.12 DEFINITION. A sequence (f;) in L, is a Cauchy sequence in
L, if for every positive number ¢ there exists an M(e) such that if
m,n > M(e), then |f, — fall, <. A sequence (f;) in L, is con-
vergent to f in L, if for every positive number ¢ there exists an N(e)
such that if n > N(e), then |f — f,ll, < €. A normed linear space is
complete if every Cauchy sequence converges to some element of the
space.

6.13 LEMMA. If the sequence (f,) converges to f in L,, then it is a
Cauchy sequence.

PROOF. If m,n > N(g/2), then

If =Fals <50 M= fils < 5-
Hence we have
"fm "'fn"p < "fm "f"p + "f"fn”p <e. Q.E.D.

We shall now show that every Cauchy sequence in L, converges in
I., to an element. This result is sometimes called the Riesz-Fischer
Theorem.

The Lebesgue Spaces L, 59

6.14 CoMPLETENESS THEOREM. If1 < p < oo, then the space L, is a
complete normed linear space under the norm

1o = { firrr e}

PROOF. It has been stated that L, is a normed lincar space. To
cstablish the completeness of L,, let (f,) be a Cauchy sequence relative
to the norm || |,. Hence, if € > 0 there exists an M(e) such that if
m,n = M(e), then

(6.8) [ia =2 = 1fu = 7 < .

There exists a subsequence (g,) of (f;) such that |g,,, — &, <2°*
for ke N. Define g by

(6.9) g0 = @) + i |gesi(d) — &),

so that g is in M *(X, X). By Fatou’s Lemma, we have

n P
Jlgl"d;» < lim infj{m + 3 g —gk|} du.
Lt k=1

‘Take the pth root of both sides and apply Minkowski’s Inequality to
obtain

1/p n
{Jigrau}” <timint{1eits + 3 1ees - aulo}
=0 k=1

< el + 1.

lence, if E={xe X :g(x) < +o}, then E€ X and u(X\E) = 0.
I'hcrefore, the series in (6.9) converges almost everywhere and g x;
helongs to L.

We now define f on X by

0

f) = () + D {ge ()~ gy E,
k

=0, x¢ E.

u [ ‘
Sinee gkl < g1l 4 Zj Vlgion =gl < g and winee (gi) converges
almost everywhere to f, the Dominated Convergence Theorem 5.6
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space. It is understood that the vector operations between the
cquivalence classes in L, are defined pointwise: the sum of the equiv-
alence classes containing f and g is the equivalence class containing

J/ + g and similarly for the product cf.

In the special case where p is the counting measure on all subsets of
N, the L,-spaces can be identified with the sequence spaces 1, of
Example 6.2(c). In this case, each equivalence class contains one
element. It is frequently enlightening to interpret assertions about
general L,-spaces by considering the somewhat simpler /,-spaces.

In order to establish that (6.3) yields a norm on L,, we shall need
the following basic inequality.

6.9 HOLDER’S INEQUALITY. Let feL, and ge L, where p > | and
(I/p) + (1/g) = 1. ThenfgelL, and | fg|, < |f],]gl..

PROOF. Let o« be a real number satisfying 0 < « < 1, and consider
the function ¢ defined for r > 0 by

@(t) = at — 14,

It is easy to check that ¢'(1) < 0for0 < ¢ < 1 and ¢'(tr) > Ofor¢ > 1.
It follows from the Mean Value Theorem of calculus that ¢(r) > (1)
and that ¢(r) = ¢(1), if and only if r = 1. Therefore we have

1“<at + (1 — «), t > 0.

If @, b are nonnegative, and if we let 1 = a/b and multiply by b, we
obtain the inequality

ab' * < wa + (1 — )b,

where equality holds if and only if a = b.

Now let p and g satisfy 1 < p < oo and (1/p) + (1/g) = 1 and take
a = 1/p. It follows that if 4, B are any nonnegative real numbers,
then

14 q
(6.4) <t B
P q
and that the equality holds if and only if 4> = B9,

Suppose that fe L, and g€ L,, and that | f|, # 0 and |g|, # 0.
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The product fg is measurable and (6.4) with A4 = |f(x)|/||f|, and
B = |g(x)|/| gllo implies that

FACSC3) R V€Y L GVl
1£1> 1gle = PIAI" © lallglle®

Since both of the terms on the right are integrable, it follows from
Corollary 5.4 and Theorem 5.5 that fg is integrable. Morcover, on
integrating we obtain

(24P < 1 1
e < =+ - = L.
Ifl-lgle =P " 4
which is Holder’s Inequality. Q.E.D.

Holder’s Inequality implies that the product of a function in L, and
a function in L, is integrable when p > | and ¢ satisfies the relation
(1/p) + (1/g) = 1 or, equivalently, when p + ¢ = pg. Two numbers
satisfying this relation are said to be conjugate indices. It will be noted
that p = 2 is the only self-conjugate index. Thus the product of two
functions in L, is integrable.

6.10 CAUCHY-BUNYAKOVSKIi-SCHWARZ INEQUALITY. If f and g
helong to Ly, then fg is integrable and

(6.5)

[foau| < [1fel e < 1712 e

6.11 MINKOWSKI’s INEQUALITY. If f and h belong to L,, p > 1,
then f+ h belongs to L, and
(0.6) ||f+ h“p < ”f“n + |-

rROOF. The case p = 1 has already been treated, so we suppose
p - 1. The sum f + A is evidently measurable. Since

Lf + Al < [2sup {|/].[A}1" < 27|/]" + [A]")

it follows from Corollary 5.4 and Theorem S.5that /1 hc 1.,. More-

over,
OIS+ hP=|f+h|f+n" < |f]1LVh" o hl S h

Simee [+ heL,, then | f+ h|”c L,;sincep — (p Dy it follows that
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6.5 LEMMA. The space L(X,X,p) is a linear space under the
operations defined by

[+ ) =f(x) +8x), (X = ef(x), xeX,

and N, is a semi-norm on L(X, X, ). Moreover, N,(f) = 0 if and
only if f(x) = O for p-almost all x in X.

PROOF. It was seen in Theorem 5.5 that L = L(X, X, p) is a linear
space under the indicated operations. It is clear that N,(f) > 0 for
feL, and that

Nef) = [Iof| de = lal [17] s = lalN,().

Moreover, it follows from the Triangle Inequality that

NAf+8) = f|f+ gl du < f(lfl + |gl) du
= [ir1du + 18l du = Nt + N®).

Hence N, is a semi-norm on L, and it follows from Corollary 4.10 that
N,(f) = 0if and only if f(x) = 0 for almost all x. Q.E.D.

In order to make L(X, X, ) into a normed linear space, we shall
identify two functions that are equal almost everywhere; that is, we use
equivalence classes of functions instead of functions.

6.6 DEFINITION. Two functions in L = L(X, X, 1) are said to be
u-equivalent if they are equal p-almost everywhere. The equivalence
class determined by f in L is sometimes denoted by [f] and consists of
the set of all functions in L which are u-equivalent to f. The Lebesgue
space L, = L,(X, X, p) consists of all u-equivalence classes in L. If
[f] belongs to L,, we define its norm by

6. U1 = [17]di.

6.7 THEOREM. The Lebesgue space L\(X, X, p) is a normed linear
space.

The Lebesgue Spaces L, 55

PROOF. It is understood, of course, that the vector operations in L,
are defined by

offl =[of], [f1+[e]=1Lf+ ¢l

and that the zero element of L, is [0]. We shall check only that
cquation (6.1) gives a norm on L;. Certainly ||[f][, > 0 and oy, =
0. Moreover, if |[f]|, = O then

fir1du o,

50 f(x) = 0 for u-almost all x. Hence [f] = [0]. Finally, it is casily
scen that properties (iii) and (iv) of Definition 6.1 are satisfied. There-
fore | |, yields a norm on L,. Q.E.D.

It should always be remembered that the elements of L, are actually
cquivalence classes of functions in L. However, it is both convenient
and customary to regard these elements as being functions, and we
shall subsequently do so. Thus we shall make reference to the
cquivalence class [f] by referring to ““the element f of L,,” and we shall

write | f|, in place of |[f]]:.

IHE SPACES L,,1 <p< +©

We now wish to consider a family of related normed linear spaces of
cquivalence classes of measurable functions.

6.8 DeFINITION. If 1 < p < o0, the space L, = L (X, X, n) con-
uists of all u-equivalence classes of X-measurable real-valued functions
/ for which |f|* has finite integral with respect to u over X. Two
functions are p-equivalent if they are equal u-almost everywhere. We

set

(0.3 i1 = {1 an}

If p =1, this reduces to the norm introduced previously on the
space L, of equivalence classes of integrable functions.  We shall show
wubsequently that if 1 < p < oo, then L, is 4 normed hncar space

under (6.3), and is complete under this norm; thus 7., is a Banach




CHAPTER 6

The Lebesgue spaces L,

It is often useful to impose the structure of a Banach space on the
set of all integrable functions on a measure space (X, X, ). In
addition, we shall introduce the L,, 1 < p < oo, spaces which occur
frequently in analysis. Aside from the intrinsic importance of these
spaces, we examine them here partly to indicate applications of some
of the results in the earlier sections.

6.1 DerFINITION. If V is a real linear (= vector) space, then a real-
valued function N on V is said to be a norm for V in case it satisfies
(i) N@ =O0forallveV;
(i) N(v) =0ifand onlyif v = 0;
(iii) N(av) = |«|N(v) for all v € V and real «;
(iv) N@u+v)<Nu) + N@)forallu,veV.
If condition (ii) is dropped, the function N is said to be a semi-norm or a

pseudo-norm for V. A normed linear space is a linear space ¥ together
with a norm for V.

6.2 ExaMPLES. (a) The absolute value function yields a norm for
the real numbers.

(b) The linear space R" of n-tuples of real numbers can be normed
by defining
Nl(uly" '7un) = Iull +-+ |un|,
Np(uy, - ooy tg) = {|w]” + -+ + [ua|}?, p > 1,

No(uy, ..., u,) = sup{luy|, ..., |u}.
52
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It is easy to check that N, and N, are norms and that N, satisfies (i),
(i), (iii). If is a consequence of Minkowski’s Inequality, which will
be proved subsequently, that N, satisfies (iv).

(c) The linear space /; of all real-valued sequences u = (u,) such
that Ny(u) = 3 |ua| < +oo is a normed linear space under Nj.
Similarly, if 1 < p < oo, the collection /, of all sequences such that
Ny(u) = {3 |un|?}*"* < +o0 is normed by N,. ‘ '

(d) The collection B(X) of all bounded real-valued functions on X
is normed by

N(f) = sup{|f()] : x € X}.

In particular, the linear space of continuous functions on X = [a, b] is

normed. .

All the preceding examples have been proper norms on a linear
space. There are also semi-norms on a linear space that are of interest.
The following are some examples.

6.3 EXAMPLES. (a) On the space R", consider the semi-norm
No(uy, . - ., ) = sup {|ug|, ..., |ual}-
Here No(uy, ..., u,) = Oifand only if uy =--- = u, = 0.

(b) On the linear space C[0, 1] of continuous functions on [0, 1] to
R, define the semi-norm

No(f) = sup{|f(x)] : 0 < x < 3.

Iere No(f) = 0 if and only if f(x) vanishes for 0 < x < 5
(¢) On the linear space of functions on [a, b] to R which have con-
tinuous derivatives, consider the semi-norm

No(f) = sup{|f'(®)| : a < x < b}.
Iere No(f) = 0 if and only if fis constant on [a, b].

0.4 DEFINITION. Let (X, X, n) be a measure space. If / belongs to
1(X, X, ), we define

NS) = f /| die.

It will be shown that N, is a semi-norm on the space L(X, X, p).
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5.M. Show that the conclusion in the Exercise 5.L may fail if the
hypothesis u(X) < +o0 is dropped.

S.N. Letf, = nx(0,1m, where X = R, X = B, and pu is Lebesgue
measure. Show that the condition | f,| < g cannot be dropped in the
Lebesgue Dominated Convergence Theorem.

5.0. If f, € L(X, X, p), and if

2 f!fnl dp < +o0,
n=1

then the series 3 f,(x) converges almost everywhere to a function f in
L(X, X, n). Moreover,

5.P. Let f,e L(X,X,un), and suppose that (f,) converges to a
function f. Show that if

1imf|f,,—f|d;4=0, then f[f|dp.=limf|f,,]dp..

5.Q. If t > 0, then
+®
J e~ dx = L .
B t

Moreover, if t > a > 0, then e * < e~%*. Use this and Exercise
4.M to justify differentiating under the integral sign and to obtain
the formula

+ o
f x"e *dx = n!
0

5.R. Suppose that f is defined on X x [a,b] to R and that the
function x — f(¢, x) is X-measurable for each te[a,b]. Suppose
that for some ¢, and ¢, in [a, b] the function x — f(x, t,) is integrable
on X, that (9f/ot)(x, t;) exists, and that there exists an integrable
function g on X such that

f(xs t) _f(x’ tl)

t_tl
forxe X,and r€[a, b],t # t,. Then

[ [ 7650 duto)]

< g(x)

= f  (x, 1) du).

t=t,
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5.S. Suppose the function x — f(x, ) is X-measurable for each
t € R, and the function ¢t — f(x, t) is continuous on R for each x € X.
In addition, suppose that there are integrable functions g, i on X such
that |f(x, t)| < g(x) and such that the improper Riemann integral

J’”’ |f(x, 0)] dt < h(x).

Show that

[ ][ 0duo)| ae = ([ ey de| duco.

where the integrals with respect to ¢ are improper Riemann integrals.

5.T. Let f be an X-measurable function on X to R. Forne N, let
(/) be the sequence of truncates of f (see Exercise 2.K). If fis
ntegrable with respect to , then

ffdp = lim ff,, du.
Conversely, if
sup Jlfnl dl‘ < +00,

then fis integrable.
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Therefore we have
b
J' F(t)dt = H() — H(a)

- f [h(x, b) — h(x, a)) du(x)

[ o]

The interchange of the order of (Lebesgue) integrals will be considered
in Chapter 10.

Q.E.D.

EXERCISES

5.A. If fe L(X, X, p) and a > 0, show that theset {x € X : | f(x)| >
a} has finite measure. In addition, the set {x € X : f(x) # 0} has

o-finite measure (i.e., it is the union of a sequence of measurable sets
with finite measure).

5.B. If fis an X-measurable real-valued function and if f(x) = 0 for
p-almost all x in X, then fe L(X, X, p) and

ffdy=0.

5.C. If fe L(X, X, p) and g is an X-measurable real-valued function

such that f(x) = g(x) almost everywhere on X, then g € L(X, X, n) and

[rauw= [gan.

5.D. If fe L(X, X,u) and € > 0, then there exists a measurable
simple function ¢ such that

flf—wld#<€-

S.E. If feL and g is a bounded measurable function, then the
product fg also belongs to L.

5.1 If f belongs to L, then it does not follow that f2 belongs to L.
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5.G. Suppose that fis in L(X, X, x) and that its indefinite integral is

XE) = L fdu, EeX.

Show that A(E) > 0 for all E € X if and only if f(x) > 0 for almost all
ve X. Moreover, A(E) = 0 for all Eif and only if f(x) = 0 for almost
all x e X.

5.H. Suppose that f; and f; are in L(X, X, w) and let A, and A, be
their indefinite integrals. Show that A, (E) = Ay(E) for all £c X if
and only if fi(x) = f5(x) for almost all x in X.

5.I. If fis a complex-valued function on X such that Re fand Im f
belong to L(X, X, ), we say that fis integrable and define

J'fd,L - fRefd,u + iflmfdp.

let £ be a complex-valued measurable function. Show that fis
mtegrable if and only if | f| is integrable, in which case

|[rau] < fusran

|Mint: If [fdu = re® with r, 8 real, consider g(x) = e* f(x).]

5.J. Let (f;) be a sequence of complex-valued measurable functions
which converges to f. If there exists an integrable function g such
that | f,| < g, show that

ffd;; = lim ff,,dp.

5.K. Let X = N, let X be all subsets of N, and let p be the counting
measure on X. Show that f belongs to L(X, X, p) if and only if the
wries > f(n) is absolutely convergent, in which case

f fdu = éf(n).

S 1. If (f;) is a sequence in L(X, X, u) which converges uniformly
on X to a function £, and if u(X) < +oo, then

[ rauw = tim [ 1, .
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pROOF. Let (#,) be a sequence in [a, b] which converges to fo, and
apply the Dominated Convergence Theorem to the sequence (fn)
defined by fi(x) = f(x, t,) for x€ X. Q.E.D.

V5.8 COROLLARY. If the function t — f(x, 1) is continuous on [a, b]
for each x € X, and if there is an integrable function g on X such that
|f(x, )| < g(x), then the function F defined by

(5.8) FO) = [ e, 0 dut)

is continuous for t in [a, b].
prROOF. This is an immediate consequence of Corollary 5.7. Q.E.D.

5.9 COROLLARY. Suppose that for some t,€|a, b), the function
x — f(x, to) is integrable on X, that of]ot exists on X x [a, b], and that
there exists an integrable function g on X such that

of

'a_t(xa t) < g(x)

Then the function F defined in Corollary 5.8 is differentiable on [a, b] and
dF .. d _(of
Uy = & [ s dut) = [0 o).

PROOF. Let t be any point of [a, b]. If (¢,) is a sequence in [a, b]
converging to ¢ with #, # ¢, then

af(x’ t) — llmf(x’ tn) —f(x’ t) ,

- xe X.
at t, — t

Therefore, the function x — (9f/dt)(x, t) is measurable.
If xe X and ¢ € [a, b], we can apply the Mean Value Theorem (see

Reference [1], page 210) to infer the existence of a s, between ?, and ¢
such that

fox, 1) = fx, 1) = (0 = 19 (3, 5.
Therefore we have

|f(x, O] < 1f(x, t)] + [ — 1] 8(x),
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which shows that the function x — f(x, 1) is integrable for each ? in
la, b). Hence, if 1, # t, then

F(t) — F(1) _ J&_t);ﬂiﬁ ().
t,— 1

1, — ¢

Since this integrand is dominated by g(x), we may apply the Dominated
Convergence Theorem to obtain the stated conclusion. Q.E.D.

510 COROLLARY. Under the hypotheses of Corollary 5.8,

[ Fyae - [ [[ e du()| de

_ fU" £x, 1) dt] (),

where the integrals with respect to t are Riemann integrals.
»ROOE. Recall that if @ is continuous on [a, b] then
d t
4 [ s =90, a<r<b
| et h be defined on X x [a, b] by
t
h(x, 1) = f f(x, s) ds.
a
It follows that (9h/ot)(x,1) = f(x,t). Since this Riemann integral
exists, it is the limit of a sequence of Riemann sums; hence the map
\ - h(x, t)is measurable foreacht. Moreover, since | f(x, )| < gx),

we infer that |A(x, )| < g(x)(b — a), so that the function x — h(x, 1)
i itegrable for each 1 € [a,b]. Let Hbe defined on [a, b] by

H) = [hx, ) duo;
it follows from Corollary 5.9 that

dH _ oh — (x 'm 1(1).
717(1)_.1.5;(x,t)dp(x) J-j(.x.l)u(\) (1)
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If / and g belong to L, then [f| and |g| belong to L. Since
|/ + g| < |f|l + |g| it follows from Corollaries 4.7 and 5.4 that f + g
belongs to L. To establish the desired relation, we observe that

f+g=(*+gH)—-( +g&)

Since f* + g* and f~ + g~ are nonnegative integrable functions, it
follows from the observation made after Definition 5.1 that

[+ o= [ +erde— U +gde
If we apply Corollary 4.7(b) and rearrange the terms, we obtain
[+ grdu=[rode=[r s fordu- [o a
= [rau+ [e . QED.

We shall now establish the most important convergence theorem
for integrable functions.

5.6 LEBESGUE DOMINATED CONVERGENCE THEOREM. Let (f,) be a
sequence of integrable functions which converges almost everywhere to a
real-valued measurable function f. If there exists an integrable function
g such that | f,| < g for all n, then [ is integrable and

(5.4) f fdu = lim f £ du.
PROOF. By redefining the functions fu,f on a set of measure 0 we
may assume that the convergence takes place on all of X. It follows

from Corollary 5.4 that f is integrable. Since g + f» = 0, we can
apply Fatou’s Lemma 4.8 and Theorem 5.5 to obtain

[edu+ [ rau= [e+pan< timinf [ (¢ + £ d

= tim inf (fg du + f f d,L)

- fgd,L 5 liminf.[f,,dp.
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Therefore, it follows that

(5.5) J.fd/.b < lim infff,. .

Sinceg — f» =2 0, another application of Fatou’s Lemma and Theorem
5.5 yields

fodn— [ ran- fig—nan < tim inf (g = /2)di
~ [gdu — timsup [ fudh
{rom which it follows that
(5.6) lim sup Jf,, < J‘fdy.
('ombine (5.5) and (5.6) to infer that

'|' fdu = lim J' fudy. QE.D.

HIEPENDENCE ON A PARAMETER

I'requently one needs to consider integrals where .the integrand
depends on a real parameter. We shall show how the L‘ebesgue
ominated Convergence Theorem can be used in this connection.

l‘or the remainder of this chapter we shall let f denote a function
defined on X x [a, b] to R and shall assume that the function x ==
/(. 1) is X-measurable for each t € [a, b]. Additional hypotheses will
he stated explicitly.

47 COROLLARY. Suppose that for some to in (a, b]

("7 flx, 1) = }g}: fx, 1)

for cach x € X, and that there exists an integrable function g on X such
that | f(x, D] < g(x). Then

ff(x, 1) du(x) = lim jﬂx. £) du(x).
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In fact, since f* — f~ = f = f, — f,, it follows that f* + f, = f; +
S . If we apply Corollary 4.7(b), we infer that

ff+d#+ffzd#=ff1dp+ff‘ du.

Since all these terms are finite, we obtain

Jraw=[r au=[r-au=[fan- | uan.
5.2 LeMMA. If f belongs to L and X is defined on X to R by

(5:2) NE) = [ fdu,
then A is a charge.

PROOF. Since f* and f~ belong to M *, Corollary 4.9 implies that
the functions A* and A-, defined by

VB = [ 1 du, v @ = [ f-du,

are measures on X they are finite because fe L. Since A = A* — A~
it follows that A is a charge. Q.E.D.

The function A defined in (5.2) is frequently called the indefinite
integral of f/ (with respect to ). Since A is a charge, if (E,) is a disjoint
sequence in X with union E, then

We refer to this relation by saying that the indefinite integral of a function
in L is countably additive.

The next result is sometimes referred to as the property of absolute
integrability of the Lebesgue integral. The reader will recall that,
although the absolute value of a (proper) Riemann integrable function
is Riemann integrable, this may no longer be the case for a function
which has an improper Riemann integral (for example, consider
/(x) = x"'sin x on the infinite interval 1 < x < +00).

Integrable Functions 43

5.3 THEOREM. A measurable function f belongs to L if and only if
| f| belongs to L. In this case

(5.3) deu < flfl dp.

PROOF. By definition f belongs to L if and only if f* and /= belong
to M* and have finite integrals. Since |f|* = |f| =/' + / and
|f|~ = 0, the assertion follows from Lemma 4.5(a) and Corollary
4.7(b). Moreover,

fra-| [~ s

<[reauw+ [rdu=[ifldu  oso.

5.4 COROLLARY. If f is measurable, g is integrable, and |f| < |g|,
then fis integrable, and

[ir1ds < [1g1 du.

pROOF. This follows from Lemma 4.5(a) and Theorem 5.3. Q.E.D.

We shall now show that the integral is linear on the space L in the
lollowing sense.

5.5 THEOREM. A constant multiple of and a sum f + g of functions
in . belongs to L and

[ofiu=a[rdu, [(r+erdu=[rdu+ [gan.
rrOOF. If @ = 0, then of = 0 everywhere so that
fafdp. 0= affdp,.
It « > 0, then (¢f)* = o«f* and («f)” = «f~, whence
[ofdu=[ars du= [arau

S R

Ihe case @ < 0 is handled similarly.
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Prove that
f fd;z=limf fodu
E

for each E€ X. £

4.U. Show that the conclusion of Exercise 4.T may fail if the
condition

lim f fodu < 400
is dropped.

CHAPTER 5

Integrable Functions

In Definition 4.4 we defined the integral of each function in
V' - M*(X,X) with respect to a measure p and permitted this
intepral to be +00. In this chapter we shall discuss the integration
ol measurable functions which may take on both positive and negative
real values. Here it is more convenient to require the values of the
lunctions and the integral to be finite real numbers.

%1 DerINITION. The collection L = L(X, X, x) of integrable (or
summable) functions consists of all real-valued X-measurable functions
{ delined on X, such that both the positive and negative parts f*, f~,
ol / have finite integrals with respect to u. In this case, we define the
Integral of f with respect to . to be

(1) ffdp=ff*dp—ff‘dp..

It 1 helongs to X, we define

Although the integral of f is defined to be the difference of the
Itepeals of £+, £, it is easy to see that if f = f, — [, where /,, f, are
Wity nonnegative measurable functions with finite integrals, then

[rauw={rae—|ran

41
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Does Fatou’s Lemma apply?
(b) Let g, = 1 X/n.2m> & = 0. Show that

fgd)«;elimfg,,d,\.

Does the sequence (g,) converge uniformly to g? Does the Monotone
Convergence Theorem apply? Does Fatou’s Lemma apply ?

4.K. If (X, X, p) is a finite measure space, and if () is a real-valued
sequence in M *(X, X) which converges uniformly to a function f
then f belongs to M *(X, X), and

ffdy = lim J.f;,dy..

4.L. Let X be a finite closed interval [a, b]in R, let X be the collection
of Borel sets in X, and let A be Lebesgue measure on X. If fis a
nonnegative continuous function on X, show that

[ran={ rwax,

where the right side denotes the Riemann integral of f. (Hint: First
establish this equality for a nonnegative step function, that is, a linear
combination of characteristic functions of intervals.)

4.M. Let X = [0, +00), let X be the Borel subsets of X, and let A
be Lebesgue measure on X. If fis a nonnegative continuous function
on X, show that

ffdA = lim f: £(%) dx.

Hence, if fis a nonnegative continuous function, the Lebesgue and the
improper Riemann integrals coincide.

[The next three exercises deal with the integration of functions which
do not belong to M *. They can be omitted until the next chapter has
been read.  However, we include them here because they illustrate the
restrictions required by Fatou’s Lemma.]
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4N. Iff, = (—1/n) x0.n, then the sequence (/,) converges uniformly

to f= 0 on [0,00). However, ff,, d\ = — 1 whereas jfd/\ =0, so
1iminfffnd,\= “1<0-= ffd)«.

Hence Fatou’s Lemma 4.8 may not hold unless f, > 0, even in the
presence of uniform convergence.

4.0. Fatou’s Lemma has an extension to a case where the /, take
on negative values. Let h be in M*(X, X), and suppose that

(hdu < +c0. If(f,)is a sequence in M(X, X) and if —h < f, then
f (liminf £,) du < lim inf f .

4.P. Why doesn’t Exercise 4.0 apply to Exercise 4 N?
4.Q. If fe M*(X, X) and
J' fdu < +o0,

thenpfxe X : f(x) = 40} = 0. [Hint: IfE, = {xe X : f(x) > n},
then nyg, < f.]
4R. If fe M*(X, X) and

f.fd# < 400,

ihen the set N = {xe X : f(x) > 0} is o-finite (that is, there exists a
wequence (F,) in X such that N < |J F, and u(F,) < +00).
4S. If fe M*(X, X) and

J.fdp. < 400,
then for any e > O there exists a set E€ X such that u(E) < +oo and
J.fdp.SJ. fdu + €.
E

A.T. Suppose that (f;) C M *(X, X), that (f,) converges to f, and
that

dey= lim Jf,,d,u < +o.
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Since p(N) = 0, the functions fxy and f, xy vanish u-almost every-
where. It follows from Corollary 4.10 that

Since f = fxu + fxy and f, = fr xu + fn xu, it follows that

ffd,L - ffo du = limff,,xM du = limfj;, di.  QED.

4.13 COROLLARY. Let (g,) be a sequence in M *, then

J(2a) a2 ()

PROOF. Let f, =g, +---+ g,, and apply the Monotone Con-

vergence Theorem. Q.E.D.

EXERCISES

4.A. If the simple function ¢ in M *(X, X) has the (not necessarily
standard) representation

m
p= Zbkxn,
k=1

where b, € R and F, € X, show that

fqa de = > by,

4.B. The sum, scalar multiple, and product of simple functions are
simple functions. [In other words, the simple functions in M (X, X)
form a vector subspace of M(X,X), closed under products.]

4.C. If ¢, and ¢, are simple functions in M (X, X), then
Y = sup{pi, 2}, = inf{p, @5}
are also simple functions in M (X, X).

4.D. If feM* and ¢ > 0, then the mapping ¢ — ¢ = cp is a
one-Lo-one mapping between simple functions ¢ € M+ with ¢ < f

H——'
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and simple functions ¢ in M * with ¢ < ¢f. Use this observation to
give a different proof of Corollary 4.7(a).

4E. Let f,g€ M*,let we M* be asimple function such L}.lat
w < f+ g and let pu(z) = sup{(m/n)w(z) : for 0 < m < n with
(m/n)w(z) < f(z)}. Alsolet P (z) = sup{(1—-1/n)w(x) - ¢,(z),0}.
Show that (1 — 1/n)w < ¢n +¥n and @ < f, ¥n < 9.

4.F. Employ Exercise 4.E to establish Corollary 4.7(b) without
using the Monotone Convergence Theorem.

4.G. Let X = N, let X be all subsets of N, and let u be the counting
measure on X. If fis a nonnegative function on NV, then fe M *(X, X)
and

J fdu = :Zlf(n)-

4H. Let X = R, X = B, and let A be the Lebesgue measure on B.
If f,, = Xt0.m» then the sequence is monotone increasing to f = X0, +«)-
/\ithough the functions are uniformly bounded by 1 and the integrals
of the f;, are all finite, we have

ffdz\ = +o0.

Does the Monotone Convergence Theorem apply ?

41 Let X =R, X = B, and X be Lebesgue measure on X If
/. = (1/n) X, + =y, then the sequence (f,) is monotone decreasing and
converges uniformly to f = 0, but

0=dez\;élimff,,dk= +o0.

(1lence there is no theorem corresponding to the Monotone Con-
. : "
vergence Theorem for a decreasing sequence in M*)

4.).(a) Let f, = (1/n) xo.m» f = 0. Show that the sequence (fy)
converges uniformly to f, but that

ffd,\ # lim J'f" dx.

Why does this not contradict the Monotone Convergence Theorem?
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Monotone Convergence Theorem implies that
f (lim inf £) du = lim f woidi

< lim inf f 1. d. QE.D.

It will be seen in an exercise that Fatou’s Lemma may fail if it is not
assumed that f, > 0.

4.9 CoROLLARY. If f belongs to M * and if X is defined on X by
(49) NE) = [ fdu,
E

then A is a measure.

PROOF. Since f > 0 it follows that A(E) > 0. If E = 0, then fxe
vanishes everywhere so that A(@) = 0. To see that A is countably

additive, let (E,) be a disjoint sequence of sets in X with union E and
let £, be defined to be

fn =k§1fXE,‘-

It follows from Corollary 4.7(b) and induction that

f fudi = 3 f fitne it = Z NE,).

Since (f;) is an increasing sequence in M * converging to fxg, the
Monotone Convergence Theorem implies that

NE) = f fxedu = lim f fodu = i MNEJ).  QED.

4.10 COROLLARY. Suppose that f belongs to M*. Then fx)=0
u-almost everywhere on X if and only if

(4.10) j i =10,

PROOF. If equation (4.10) holds, let

E, = {xeX:f(x) > 'l'},
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so that f > (1/n) xg, , from which

0= [ fau> k) > 0.
It follows that w(E,) = 0; hence the set

(xe X: f(x) > 0} = Ql E,
also has measure 0.
Conversely, let f(x) = 0 u-almost everywhere. If

E={xeX:f(x)>0},

then w(E) = 0. Letf, = nxg. Since f < liminff,, it follows from
I'atou’s Lemma that

0< ffdy < lim infff,, din =10, QE.D.

\4//1 COROLLARY. Suppose that f belongs to M *, and define A on X
by equation (4.9). Then the measure X is absolutely continuous with
respect to w in the sense that if E € X and w(E) = 0, then N(E) = 0.

rrOOF. If w(E) = 0 for some E€ X, then fxg vanishes p-almost
cverywhere. By Corollary 4.10, we have

NE) = [ fxsdu = 0. QED.

We shall now show that the Monotone Convergence Theorem holds
il convergence on X is replaced by almost everywhere convergence.

4.12 CorOLLARY. If (f,) is a monotone increasing sequence of
functions in M *(X, X) which converges p-almost everywhere on X to
i function fin M *, then

ffdp. = lim J'f,,dp.

rroor. Let Ne X be such that w(N) = 0 and (f,) converges to f
at every point of M = X\ N. Then (f, xm) converges to fxy on X,
w0 the Monotone Convergence Theorem implies that

[ 7200 = tim [ £
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sothat 4, € X, 4, < A,,,,and X = J 4,. Accordingto Lemma4.5

s

4.7) f ap du sf fodu < ffndp.
An An

Since the sequence (4,) is monotone increasing and has union X, it
follows from Lemmas 4.3(b) and 3.4(a) that

fq)d;l. N limf o dis.
Ap

Therefore, on taking the limit in (4.7) with respect to n, we obtain

af¢dp<limfﬁ‘dy.

Since this holds for all « with 0 < « < 1, we infer that

fq:d;LS 1imff,,dp

and since g is an arbitrary simple function in M * satisfying 0 < ¢ < f,
we conclude that

ffdy - supfzpdu < limffnd,u.
@

If we combine this with the opposite inequality, we obtain (4.6). Q.E.D.

REMARK. It should be observed that it is not being assumed that
either side of (4.6) is finite. Indeed, the sequence (ffn du) is a mono-

tone increasing sequence of extended real numbers and so always has
a limit in R, but perhaps not in R.

We shall now derive some consequences of the Monotone Con-
vergence Theorem.

4.7 CorROLLARY. (a) If f belongs to M * and ¢ > 0, then cf belongs
to M* and

f of du = ¢ f fdu.

(b) If f, g belong to M *, then f + g belongs to M * and

Jo+odu=[rau+ [gan.
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PROOF. (a) If ¢ = O the result is immediate. If ¢ > 0, let (¢,) be
a monotone increasing sequence of simple functions in M * converging
to fon X (see Lemma 2.11). Then (cg,) is a monotone sequence
converging to ¢f. If we apply Lemma 4.3(a) and the Monotone
Convergence Theorem, we obtain

lim J.c @, du

clim ftp,, dp = ¢ J.fd/i-

J.cfdy,

(b) If (p,) and (J,) are monotone increasing sequences of simple
functions converging to f and g, respectively, then (¢, + ;) is a
monotone increasing sequence converging to f + g. It follows from
I emma 4.3(a) and the Monotone Convergence Theorem that

[+ g = tim [@n + ) ds
- limfzp,,dp.+limf¢,,dp
= ffdp + Jg du. Q.E.D.

The next result, a consequence of the Monotone Convergence
I'hcorem, is very important for it enables us to handle sequences of
functions that are not monotone.

4.8 FATOU’s LEMMA. If (f,) belongs to M *(X, X), then
(1 8) f (lim inf £) du < lim inf f 7 dis.

rROOF.  Let gn = inf{fn, fns+1,-..} so that g, < f, whenever
m - n. Therefore

fgmdlu, < J‘f" d[l,, m < n,
no that

fg,,, dp < lim ian‘,/',l dpe.

Since the sequence (g,,) is increasing and converges to liminf £, the
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Since X is the union of both of the disjoint families {E;} and {F,}, then
ME) = 2 WENF), wF)= D wE NF,).
k=1 i=1

We employ this observation (and change the order of summation in
the second term) to obtain the desired relation

o+ na

Zl o WE) + > b u(F)

= ftpdp. + Jt/ld::l

To establish part (b), we observe that

n
PXE = Z aj XE;nE-
i=1

Hence, it follows by induction from what we have proved that

NE) = [oxede= 3 a [xopwdi= 3 au(k 0 E).
i=1 i=1

Since the mapping E — u(E; N E) is a measure (see Exercise 3.A) we
have expressed A as a linear combination of measures on X. It follows
(see Exercise 3.B) that A is also a measure on X. Q.E.D.

We are now prepared to introduce the integral of an arbitrary
function in M *. Observe that we do not require the value of the
integral to be finite.

4.4 DeFINITION.  If f belongs to M *(X, X), we define the integral
of f with respect to x to be the extended real number

@3) [7au = sup [odu,

where the supremum is extended over all simple functions ¢ in
M *(X, X) satisfying 0 < @(x) < f(x) for all xe X. If f belongs to
M *(X, X) and E belongs to X, then fx; belongs to M *(X, X) and we

define the integral of / over E with respect to u to be the extended real
number

(4.4) [ s = [ rxsdn.
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We shall first show that the integral is monotone both with respect
to the integrand and the set over which the integral is extended.

4.5 LemMA. (a) If fand g belong to M *(X, X) and [ < g, then

4.5) ffd;z < fg du.

(b) If f belongs to M* (X, X), if E, F belong to X, and if E< F, then

e |

pROOF. (a) If @ is a simple function in M * such that 0 < ¢ < /s
then 0 < ¢ < g. Therefore (4.5) holds.
(b) Since fxg < fxr, part (b) follows from (a). Q.E.D.

We are now prepared to establish an important result due to B. Levi.
I'his theorem provides the key to the fundamental convergence
properties of the Lebesgue integral.

4.6 MONOTONE CONVERGENCE THEOREM. If (f,) is a monotone
increasing sequence of functions in M * (X, X) which converges to f, then

(4.6) ffdp - limjfn .

rROOF. According to Corollary 2.10, the function f is measurable.
Since fy, € farr < f, it follows from Lemma 4.5(a) that

[ Ao < [ frrau < [ran

for all ne N. Therefore we have
limffndy < ffd,L.

I'o establish the opposite inequality, let « be a real number s:ni.sfy?ng
0 «< 1 and let ¢ be a simple measurable function satisfying
0« ¢ <f. Let
Ap = {x€ X : fu(x) 2 ap(x))
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are disjoint nonempty subsets of X and are such that X = (J_, E;.
(Of course, if we do not require the a; to be distinct, or the sets E, to
be disjoint, then a simple function has many representations as a linear
combination of characteristic functions.)

4.2 DerINITION. If ¢ is a simple function in M *(X, X) with the
standard representation (4.1), we define the integral of ¢ with respect to
@ to be the extended real number

(42) [oae= 3 aue.

In the expression (4.2) we employ the convention that 0(+c0) = 0
so the integral of the function identically O is equal to 0 whether the
space has finite or infinite measure. It should be noted that the value
of the integral of a simple function in M * is well-defined (although it
may be +00) since all the @, are nonnegative, and so we do not encounter
meaningless expressions such as (+00) — (400).

We shall need the following elementary properties of the integral.

4.3 LEMMA.
¢ >0, then

(@) If @ and  are simple functions in M *(X, X) and

ffwdﬂ Cfv’du,

Jo+wd= [odu+ [du.

Il

(b) If A is defined for E in X by

A(E) = fw Xk dp,

then A is a measure on X.

PROOF. If ¢ = 0, then ce vanishes identically and the equality

holds. If ¢ > 0, then cg is in M * with standard representation

n
cp = z ca’ XE‘,

i=1
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when ¢ has standard representation (4.1). Therefore

J"‘P dp = Z ca; W(E)) = ¢ Z a; ((E;) = "J"” dp.
i=1 i=1
Let ¢ and ¢ have standard representations

n m
Q= ZaIXE,a ¢= ZkaFk’
i=1 k=1

then ¢ + ¢ has a representation

n m
p+yY= Z z (a; + b)xe,aF, -
j=1k=1

However, this representation of ¢ + ¢ as a linear combination

29

of

characteristic functions of the disjoint sets E; N F is not necessarily
the standard representation for ¢ + ¥, since the values a; + b, may

not be distinct. Letec,, h=1,...
sCt{a,+bk1j=1,...,n;k=1,...,
of all those sets F; N Fy # 0 such that a; + by = ch. Thus

w(Gy) = 2 w(E; N Fy),

, P, be the distinct numbers in the
m} and let G, be the union

where the notation designates summation over all j, k such that

a; + bk = Cp.

P
p+y= z Ch XGn >
R=1

we find that

M'u

(o Pdi= > nuG) = D> S cuulE N F
o h=1 (h)

>
]
-

Il
N

(a; + b)) W(E; 0 Fy)

Ed
L}
=

h)

S (@ + b w(E, N F)

i WE N E) + 3

=1 =

Il
-
1 N\A=
ol
=
-

by (B, O F).

b= 1

uM:

=

Since the standard representation of ¢ + ¢ is given by
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(c) The open interval (a, b), the half-open intervals (a, b], [a, b), and
the closed interval [a, b] all have Lebesgue measure b — a.

3.S. If A denotes Lebesgue measure and E is an open subset of R,
then A(E) > 0 if and only if E is nonvoid. Show that if K is a
compact subset of R, then A\(K) < +oo.

3.T. Show that the Lebesgue measure of the Cantor set (see Reference
[1], p. 52) is zero.

3.U. By varying the construction of the Cantor set, obtain a set of
positive Lebesgue measure which contains no nonvoid open interval.

3.V. Suppose that E is a subset of a set N € X with w(N) = 0 but
that E¢ X. The sequence (f,), f» = 0, converges u-almost everywhere

to xg. Hence the almost everywhere limit of a sequence of measurable
functions may not be measurable.

CHAPTER 4

The Integral

In this chapter we shall introduce the integral first for nonnegative
simple measurable functions and then for arbitrary nonnegative
cxtended. real-valued measurable functions. The principal result is
{he celebrated Monotone Convergence Theorem, which'is a basic
tool for everything that follows.

Throughout this chapter we shall consider a fixed measure space
(Y, X,un). We shall denote the collection of all X-measurable
functions on X to R by M = M(X, X) and the collection of all non-
negative X-measurable functions on X to Rby M* = M*(X, X).
We shall define the integral of any function in M * with respect to the
measure w.  In order to do so we shall find it convenient to introduce
the notion of a simple function. It is convenient to require that simple
functions have values in R rather than in R.

4.1 DEFINITION. A real-valued function is simple if it has only a
finite number of values.

A simple measurable function ¢ can be represented in the form

n
(1) ®= 2 Xz
i=1
where a; € R and xg, is the characteristic function of a sct £ in X.

Among these representations for ¢ there is a unique standard repre-
wentation characterized by the fact that the «; are distinet and the E;
27
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then A is a measure on X and A(X) = 1.
3.D. Let X = N and let X be the o-algebra of all subsets of NV. If

(a,) is a sequence of nonnegative real numbers and if we define p by

w0 = 0; wWE) = 3 ay, E#0;

nekE

then p is a measure on X. Conversely, every measure on X is obtained
in this way for some sequence (a,) in R *

3.E. Let X be an uncountable set and let X be the family of all
subsets of X. Define x on E in X by requiring that u(E) = 0, if E is
countable, and j«(E) = +oo, if E is uncountable. Show that p is a
measure on X.

3.F. Let X = N and let X be the family of all subsets of N. If E is
finite, let u(E) = 0; if £ is infinite, let u(£) = +o00. Is p a measure
on X?

3.G. If X and X are as in Exercise 3.F, let A(E) = +oo forall £ € X.
Is A a measure?

3.H. Show that Lemma 3.4(b) may fail if the finiteness condition
w(Fy) < 400 is dropped.

3.1. Let (X, X, n) be a measure space and let (£,) be a sequence in
X. Show that

uw(lim inf £,) < lim inf w(E,).
[See Exercise 2.E.]
3.J. Using the notation of Exercise 2.D, show that

lim sup pu(E,) < p(lim sup E,)
when (| J E,) < +oo. Show that this inequality may fail if w(|_ E,) =
+00.

3.K. Let (X, X, ) be a measure space and let Z = {E€ X : w(E) =
0}. Is Zao-algebra? Show thatif E€ Zand Fe X, then EN Fe Z.
Also, if E, belongs to Z for ne N, then| E, € Z.

3.L. Let X, X, u, Z be as in Exercise 3.K and let X’ be the family of
all subsets of X of the form

(EVZ)\Z,, EeX,
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where Z, and Z, are arbitrary subsets of sets belonging to Z. Show
that a set is in X" if and only if it has the form £ U Z where E€ Xand Z
is a subset of a set in Z. Show that the collection X’ forms a o-algebra
of sets in X. The o-algebra X' is called the completion of X (with
respect to p).

3.M. With the notation of Exercise 3.L, let " be defined on X’ by

W(EV Z) = WE),
when E€ X and Z is a subset of a set in Z. Show that p' is well-

defined and is a measure on X’ which agrees with p on X. The
measure p’ is called the completion of ..

3.N. Let (X, X, ) be a measure space and let (X, X', p') be its
completion in the sense of Exercise 3.M. Suppose that f is an X'-
measurable function on X toR. Show that there exists an X-measurable
function g on X to R which is p-almost everywhere equal to f.  (Hint:
l‘or each rational number r, let 4, = {x : f(x) > r} and write 4, =
I\ U Z,, where E, € X and Z, is a subset of a set in Z. Let Z be a set
m Z containing \J Z, and define g(x) = f(x) for x ¢ Z, and g(x) = 0
for xe Z. To show that g is X-measurable, use Exercise 2.U.)

3.0. Show that Lemma 3.4 holds if p is a charge on X.

3.P. If  is a charge on X, let 7 be defined for E € X by
m(E) = sup{uw(4) : A < E, A€ X}.
Show that « is a measure on X. (Hint: 1f m(E,) < 0 and e > 0, let

/'« X be such that F, < E, and #(E,) < p(F,) + 2 "¢.)
1.Q. If uis a charge on X, let v be defined for £ € X by

WE) = sup > |u(4),
i=1

where the supremum is taken over all finite disjoint collections {4}
i X with £ = \J7-, A4;. Show that v is a measure on X. (Itis called
(he variation of p.)

| R. Let A denote Lebesgue measure defined on the Borel algebra B
ol R [see Example 3.2(d)]. (a) If E consists of a single point, then
I« Band ME) = 0. (b) If E is countable, then £ Band ME) = 0.




—————
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(b) Let E, = F,\ F,, so that (E,) is an increasing sequence of sets
in X. If we apply part (a) and Lemma 3.3, we infer that

o U, Eu) = lim p(Ey) = lim [u(F) = w(F)
= W(Fy) — lim u(Fy).
Since -1 E, = Fi\(Na=1 Fas it follows that

u( U Eu) = w(F) - ;L( n Fn)'
Combining these two equations, we obtain (3.3). Q.E.D.

3.5 DEFINITION. A measure space is a triple (X, X, p) consisting
of a set X, a o-algebra X of subsets of X, and a measure p defined on X.

There is a terminological matter that needs to be mentioned and
which shall be employed in the following. We shall say that a certain
proposition holds p-almost everywhere if there exists a subset Ne X
with u(N) = 0 such that the proposition holds on the complement
of N. Thus we say that two functions f, g are equal p-almost every-
where or that they are equal for p-almost all x in case f(x) = g(x) when
x¢ N, for some NeX with w(N) =0. In this case we will often
write

f=g, pae

In like manner, we say that a sequence (f,) of functions on X converges
u-almost everywhere (or converges for p-almost all x) if there exists a
set N € X with u(N) = 0 such that f(x) = lim fi(x) for x¢ N. In this
case we often write

f=Ilimf,, wp-ae.

Of course, if the measure u is understood, we shall say ““almost every-
where” instead of *“u-almost everywhere.”

There are some instances (suggested by the notion of electrical
charge, for example) in which it is desirable to discuss functions which
behave like measures except that they take both positive and negative
values. In this case, it is not so convenient to permit the extended real
numbers 400, —co to be values since we wish to avoid expressions of
the form (+00) 4+ (—00). Although it is possible to handle “signed
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measures” which take on only one of the values +00, —00, W€ shall
restrict our attention to the case where neither of these symbols is
permitted. To indicate this restriction, we shall introduce the term
“charge,” which is not entirely standard.

3.6 DerNITION.  If X is a o-algebra of subsets of a set X ,'then a
real-valued function A defined on X is said to be'a charge in .cgsc
@) = Oand Ais countably additive in the sense that if (E,) is a disjoint
sequence of sets in X, then

A0, E) = 2 NED.

\ n=1

[Since the left-hand side is independent of the order and this cquallity
is required for all such sequences, the series on the right-hand side
must be unconditionally convergent for all disjoint sequences of

measurable sets.]

It is clear that the sum and difference of two charges is a charge.
More generally, any finite linear combination of charges is a charge.
It will be seen in Chapter 5 that functions which are integrable over a
measure space (X, X, 1) give rise to charges. Later, in Chapter 8,
we will characterize those charges which are generated by integrable

functions.

I:XERCISES

3.A. If p is a measure on X and A is a fixed set in X, then the
{unction A, defined for E € X by NE) = p(4 N E), is a measure on X.

3.B. If by, - - - » o ATC MEASUTES on Xand a;,...,a,are nonnegative
real numbers, then the function A, defined for E€ X by

NE) = 2. aymlE),
=1
is a measure on X. '
3.C. If (u,) is a sequence of measures on X with p,(X) I and if A
i defined by

NE) = 3, 27 mlE) B X
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we say that it is finite. More generally, if there exists a sequence (£,)
of sets in X with X = |J E, and such that u(E,) < +oo for all n, then
we say that u is o-finite.

3.2 ExaMpLES. (a) Let X be any nonempty set and let X be the
o-algebra of all subsets of X. Let pu, be defined on X by
w(E) =0, for all Fe X;
and let p, be defined by
#a(0) = 0, po(E) = +

Both u; and u, are measures, although neither one is very interesting.
Note that p, is neither finite nor o-finite.

(b) Let (X, X) be as in (a) and let p be a fixed element of X. Letpu
be defined for E € X by

w(E) =0, if p¢E,
=1, if peE.

if E#0.

It is readily seen that x is a finite measure; it is called the unit measure
concentrated at p.

(c) Let X =N =1{1,2,3,...} and let X be the o-algebra of all
subsets of N. If E€ X, define u(E) to be equal to the number of
elements in £ if E is a finite set and equal to +oo if £ is an infinite set.
Then p is a measure and is called the counting measure on V. Note
that u is not finite, but it is o-finite.

(d) If X = R and X = B, the Borel algebra, then it will be shown
in Chapter 9 that there exists a unique measure A defined on B which
coincides with length on open intervals. [By this we mean that if £
is the nonempty interval (a, b), then ME) = b — a.] This unique
measure is usually called Lebesgue (or Borel) measure. It is not a
finite measure, but it is o-finite.

() If X = R, X = B, and f is a continuous monotone increasing
function, then it will be shown in Chapter 9 that there exists a unique
measure A, defined on B such that if E = (a, b), then A(E) = f(b) —
f(a). This measure A, is called the Borel-Stieltjes measure generated
by f.

We shall now derive a few simple results that will be needed later,
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3.3 LEMMA. Let p be a measure defined on a o-algebra X. If E and
I' belong to X and E < F, then p(E) < p(F). If W(E) < +o0, then
W(F\ E) = i(F) — ((E).

pROOF. Since F = EU (F\ E)and EN (F\ E) = 0, it follows that
w(F) = WE) + p(F\ E).

since w(F\ E) = 0, it follows that w(F) > w(E). If w(E) < +oo,
then we can subtract it from both sides of this equation. Q.E.D.

3.4 LEMMA. Let p be a measure defined on a o-algebra X.

(a) If (E,) is an increasing sequence in X, then

(12) (U E) = lim w(E).

n=1

(b) If (F,) is a decreasing sequence in X and if p(F,) < +o0, then
(1 i al Fn) = lim u(F,).

poor.  (a) If u(E,) = +oo for some n, then both sides of equation
(\))are +oo. Hence we can suppose that p(E,) < +co for all n.

let A, - E,and A, = E,\ E,_,forn > 1. Then (4,) is a disjoint
seipience of sets in X such that

E"=;L=)1A” nL=JlE"=nL=JxAm

Hinee ois countably additive,
o o0 m
(U E) = 2w = lim > (4.
n- n=1 n=1
Wy Lemma 3.3 w(A,) = w(E) — p(E,-y) for n > 1, s0 the finite series
i the vight side telescopes and
m

> (A = Ey).

n-1

Hetee equantion (3.2) 1s proved.
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belong to M. Show that a o-algebra is a monotone ciass. Also, if
A is a nonempty collection of subsets of X, then there is a smallest
monotone class containing A. (This smallest monotone class is called
the monotone class generated by A.)

2.W. If 4 is a nonempty collection of subsets of X, then the o-algebra
S generated by A4 contains the monotone class M generated by A4.
Show that the inclusion 4 < M < S may be proper.

CHAPTER 3

Measures

We have introduced the notion of a measurable space (X, X) con-
wnting of a set X and a o-algebra X of subsets of X. We now consider
certain functions which are defined on X and have real, or extended
ieal values. These functions, which will be called ‘“measures,” are
siippested by our idea of length, area, mass, and so forth. Thus it is
nntural that they should attach the value 0 to the empty set @ and that
they should be additive over disjoint sets in X. (Actually we shall
iequire that they be countably additive in the sense to be described
lwlow.) It is also desirable to permit the measures to take on the
eatended real number +o0.

{ I DEEINITION. A measure is an extended real-valued function p
defined on a o-algebra X of subsets of X such that (i) x(9) = 0, (ii)
pthy) 0 for all E€ X, and (iii) p is countably additive in the sense
that il (1,) is any disjoint sequence* of sets in X, then

o

®
(1) WU E) = 2 WE).
n=1 n=1
Hinee we permit g to take on +00, we remark that the appearance of
the vilue 1 oo on the right side of the equation (3.1) mcans cither that
il | o for some n or that the series of nonnegative terms on the
Pl wide of (3.1 is divergent.  If a measure does not take on +o0,

Yol means that £, 0 E, Wiftn # m.

19
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When this equality holds, the common value is called the limit of (4,)
and is denoted by lim 4,.

2.1. Give an example of a function f on X to R which is not X-
measurable, but is such that the functions |f| and f? are X-measurable.

2.J. If a, b, c are real numbers, let mid (a, b, ¢) denote the ‘““value in
the middle.” Show that

mid (a, b, ¢) = inf {sup {a, b}, sup {a, c}, sup {b, c}}.

If f1, /2, fs are X-measurable functions on X to R and if g is defined
for x e X by

g(x) = mid (fi(x), fo2(x), fa(x),
then g is X-measurable.

2.K. Show directly (without using the preceding exercise) that if f
is measurable and 4 > 0, then the truncation f, defined by

fux) = f(x), i [f(x)] < 4,
A, if f(x) > 4,
—A, if fx)< —4,

Il

is measurable.

2.L. Let f be a nonnegative X-measurable function on X which is
bounded (that is, there exists a constant K such that 0 < f(x) < K for
all xin X). Show that the sequence (¢,) constructed in Lemma 2.11
converges uniformly on X to f.

2.M. Let f be a function defined on a set X with values in a set Y.
If E is any subset of Y, let

fYE) ={xe X: f(x)e E}.

Show that f~1(0) = 0, f~}(Y) = X. If E and F are subsets of Y,
then

S UE\F) =f"YE)\ fTHF).
If {E,} is any nonempty collection of subsets of Y, then
FHYUE) =Y ED, S0 Eo) =0 HED-

In particular it follows that if Y is a o-algebra of subsets of Y, then
{/ () : Ee Y}is a o-algebra of subsets of X.
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2.N. Let f be a function defined on a set X with values in a set Y.
Let X be a o-algebra of subsets of Xandlet Y = {E < Y : f Y E)€ X}.
Show that Y is a o-algebra.

2.0. Let (X, X) be a measurable space and f be defined on X to Y.
lct A be a collection of subsets of Y such that /= '(£) ¢ X for every
I'c A. Show that f~}(F)e X for any set F which belongs to the
s-algebra generated by A. (Hint: Use the preceding exercisc.)

2.P. Let (X, X) be a measurable space and / be a real-valued function
defined on X. Show that fis X-measurable if and only if / '(E) ¢ X
lor every Borel set E.

2.Q. Let (X, X)be a measurable space, f be an X-measurable function
on X to R and let @ be a continuous function on R to R. Show that
ihe composition @ o f, defined by (¢ o f)(x) = [f(x)], is X-measurable.
(- If @ is continuous, then ¢~ *(E) € B for each E € B.)

> R. Let f be as in the preceding exercise and let ¢ be a Borel
measurable function.  Show that ¢ o f'is X-measurable.

’S. Let f be a complex-valued function defined on a measurable
space (X, X).  Show that fis X-measurable if and only if

(xeX:a< Ref(x) <b, ¢c<Imf(x)<d}

helonps to X for all real numbers a, b, c,d. More generally, f is
\ measurable if and only if f~%(G) € X for every open set G in the
vomplex plane C.

' I Show that sums, products, and limits of complex-valued
mennurable functions are measurable.

' 11 Show that a function fon X to R (or to R) is X-measurable if
anil only 1if the set 4, in Lemma 2.4(a) belongs to X for each rational
iiiber o or, if and only if the set B, in Lemma 2.4(b) belongs to X
to ench rational number «; etc.

'V A nonempty collection M of subsets of a set X is called a
mimotone class if, for each monotone increasing sequence (£,) in M
Wil ench monotone decreasing sequence (F,) in M, the sets

U l‘:nv m I"u
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complex-valued function f to be measurable if and only if its real and
imaginary parts f; and f;, respectively, are measurable. It is easy to
sce that sums, products, and limits of complex-valued measurable
functions are also measurable.

FUNCTIONS BETWEEN MEASURABLE SPACES

In the sequel we shall require the notion of measurability only for
real- and complex-valued functions. In some work, however, one
wishes to define measurability for a function f from one measurable
space (X, X) into another measurable space (Y, Y). In this case one
says that f'is measurable in case the set

S7HE) ={xe X : f(x) e E}

belongs to X for every set E belonging to Y. Although this definition
of measurability appears to differ from Definition 2.3, it is not difficult
to show (see Exercise 2.P) that Definition 2.3 is equivalent to this
definition in the case that ¥ = Rand Y = B.

This definition of measurability shows very clearly the close analogy
between the measurable functions on a measurable space and continuous
functions on a topological space.

EXERCISES

2.A. Show that [a,b] =(\7-, (@ — 1/n, b + 1/n). Hence any o-
algebra of subsets of R which contains all open intervals also contains
all closed intervals. Similarly, (a,b) = Uy-:1[a + 1/n, b — 1/n], so
that any o-algebra containing all closed intervals also contains all
open intervals.

2.B. Show that the Borel algebra B is also generated by the collection
of all half-open intervals (a,b] ={xeR:a < x < b}. Also show
that B is generated by the collection of all half-rays {xe R : x > a},
acR.

2.C. Let (4,) be a sequence of subsets of a set X. Let £, = 0 and
forne N, let

Eo=\) 4w, Fo=A\E, ..
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Show that (E,) is a monotone increasing sequence of sets and that (Fp)
is a disjoint sequence of sets (that is, F, N F,, = @ if n # m) such that

L—Jl E" - nL=Jl F,‘ - nL=J1 A"'

2. Let (4,) be a sequence of subsets of a set X. If A consists of

all v A which belong to infinitely many of the sets A4,, show that
A= [ y 4]
m=1Ln=m

I'he wel A is often called the limit superior of the sets (4,) and denoted
by i sup A, .

"I let (A,) be a sequence of subsets of a set X. If B consists of
all v o\ which belong to all but a finite number of the sets A4,, show

!

n=m
I e set s often called the limit inferior of the sets (4,) and denoted
by it A,
S0 () inon sequence of subsets of a set X which is monotone
Perenning (that dn, 2o By o By < -2 -), show that
lin wup 1, k‘ 'J I, — liminf E,.
I

"

FEE W CE ) e a seguence of subsets of a set X which is monotone
ecieaniig hat s, 1, [ AP S ), show that
Wi wuip 1y, () Fe o hoont 2

S0 b weuenes ol subimets of A show that
W et A, e Himaap A, o0\
I U L R T N TR T
W inh 4, = 0 M a1, \

e i wamiiple ol o seguenes (4 whivh s nelther monotone

PRt o e ienaling, ik 1a s I that

il A, = hisap A,
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both of which belong to X. However, if we define f + g to be zero
on I, U E,, the resulting function on X is measurable. We shall
return to the measurability of the product fg after the next result.

2.9 LEMMA. Let (f,) be a sequence in M(X,X) and define the
Jfunctions
S(x) = inffy(x), F(x) = supfu(x),
[*(x) = liminf f(x), F*(x) = lim sup f,(x).

Then f, F, f*, and F* belong to M(X, X).

PROOF. Observe that

@

(xeX:f(x) 2 a} =) {xeX:fo(x) = o},

n=1

xeX:Fx)>a = ) xeX: fix) > o},

n=1

so that fand F are measurable when all the f, are. Since

f*x) = su?{ inf f,,,(x)ll,

F*(x) = inf { sup fu(x)},

mz2n J

the measurability of f* and F* is also established. Q.E.D.

2.10 COrROLLARY. [If (fy) is a sequence in M(X, X) which converges
to fon X, then fisin M(X, X).

PROOF. In this case f(x) = lim f,(x) = lim inf f(x). Q.E.D.

We now return to the measurability of the product f g when f, g
belongto M (X, X). Ifne N,letf, bethe “truncation of /** defined by

fix) = f(x), if [f(x)] <n,
=n, if f(x) > n,
= —n, if f(x) < —n.
Let g, be defined similarly. It is readily seen that f, and g, are
measurable (see Exercise 2.K). It follows from Lemma 2.6 that the
product f, g,, is measurable. Since

S(X) gn(x) = li"mfn(.\') gn(x), x€X,
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it follows from Corollary 2.10 that fg, belongs to M(X, X). Since
(f&)(x) = f(x) gx) = lim f(x) gn(x), x€ X,

another application of Corollary 2.10 shows that f g belongs to M (X, X).

It has been seen that the limit of a sequence of functions in M (X. X)
belongs to M(X, X). We shall now prove that a nonnegative function
fin M(X, X) is the limit of a monotone increasing sequence (¢,) in
M(X, X). Moreover, cach g, can be chosen to be nonnegative and to
assume only a finite number of real values.

2.11 LEMMA. If f is a nonnegative function in M(X, X), then there
exists a sequence (@,) in M(X, X) such that

(@) 0 € @p(x) € @nss(x) for xe X,neN.
(b) f(x) = lim pu(x) for each x € X.
(c) Each ¢, has only a finite number of real values.

pROOF. Let n be a fixed natural number. Ifk =0,1,...,n2" — 1,
let I, be the set

E = {xeX: k2" < f(x) < (k + 1)277),

and if k = n2*, let E,, be the set {x € X : f(x) > n}. We observe that
(he sets {Egq  k =0, 1,...,n2"} are disjoint, belong to X, and have
wmon equal to X.  If we define @, to be equal to k27" on Ej,, then ¢,
belongs to M(X, X). Tt is readily established that the properties (a),
(h), (¢) hold. Q.E.D.

( OMPLEX-VALUED FUNCTIONS

It frequently important to consider complex-valued functions
defined on X and to have a notion of measurability for such functions.
We abserve that if fis a complex-valued function defined on X, then
ihere exist two uniquely determined real-valued functions f,, f, such
thit

f=h+ifa
(hdeed, £,(0)  Re f(x), fulx) = Im f(x), for x« X.)  We define the
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(d) Since fg = }(f + g)? — (f — g)?, it follows from parts (a), (b),
and (c) that fg is measurable.
(¢) If « < 0, then {xe€ X : [f(x)| > o} = X, whereas if « > 0, then

XxeX:|f@)| >} ={xeX:f(x) > U{xeX: f(x) < —a}.
Thus the function |f| is measurable. Q.E.D.

If fis any function on X to R, let f* and f~ be the nonnegative
functions defined on X by

24 fr(x) = sup{f(x), 0}, f~(x) = sup{-/(x),0}.

The function f* is called the positive part of f and f~ is called the
negative part of f. It is clear that

(2.5) f=f*—=f and |f]=f*+f"
and it follows from these identities that
(2.6) =35 +0, =311 -0.

In view of the preceding lemma we infer that f is measurable if and
only if /* and f~ are measurable.

The preceding discussion pertained to real-valued functions defined
on a measurable space. However, in dealing with sequences of
measurable functions we often wish to form suprema, limits, etc., and
it is technically convenient to allow the extended real numbers —co, +o0
to be taken as values. Hence we wish to define measurability for
extended real-valued functions and we do this exactly as in Definition 2.3.

2.7 DErFINITION. An extended real-valued function on X is X-
measurable in case the set {x € X : f(x) > «} belongs to X for each real
number «. The collection of all extended real-valued X-measurable
functions on X is denoted by M (X, X).

Observe that if fe M(X, X), then
(xe X : f(x) = +o0} = rjl (xe X :f(x) > n},

(xe X :f(x) = —oo} = 6] Ol xeX:f( > —n,

so that both of these sets belong to X.
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The following lemma is often useful in treating extended real-valued
functions.

2.8 LEMMA. An extended real-valued function f is measurable if and
only if the sets

A={xeX:f(x) = +0}, B={xeX:/[f(x) o0}
helong to X and the real-valued function f, defined by

filx) = f(x), ifx¢AUB,
=0, ifxe AU B,
is measurable.

prROOF. If fis in M (X, X), it has already been noted that 4 and B
belong to X. Let € R and « > 0, then

{xe X:filx) >a} ={xeX:f(x)>a}\A4.
I« < 0, then
(xeX:filx) >} ={xeX:f(x) >} VUB.

Ilence f; is measurable.
Conversely, if A, Be X and f; is measurable, then

(xeX:f(x)>a}={xeX:fi(x) >} 4
when e = 0, and

(xeX:f(x) >a} ={xeX:fi(x) >}\B

when « < 0. Therefore f is measurable. Q.E.D.
It 15 a consequence of Lemmas 2.6 and 2.8 that if fis in M (X, X),
then the functions

o, % Ul
wlo belong to M(X, X).

I he only comment that need be made is that we adopt the convention
that O( 1) — 0 so that ¢f vanishes identically when ¢~ 0. If fand g
helong to M(X, X), then the sum f + g is not well-defined by the
formula (/1 g)(x) = f(x) + g(x) on the sets

I,y X f(x) = —oo and  g(v) oo},
I, {xc X:f(x) oo and  g(v) w},
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and let B be the collection of all sets E,E,, E,, E; as E varies over B.

It is readily seen that B is a o-algebra and it will be called the extended
Borel algebra.

In the following, we shall consider a fixed measurable space (X, X).

2.3 DEFINITION. A function fon X to R is said to be X-measurable
(or simply measurable) if for every real number « the set
(2.3) xeX:f(x) > a}
belongs to X.

The next lemma shows that we could have modified the form of the
sets in defining measurability.

2.4 LEMMA. The following statements are equivalent for a function
fon X toR:

(a) For every wc R, the set A, = {xe X : f(x) > o} belongs to
(b) For every we R, the set B, = {x€ X : f(x) < o} belongs to
(c) For every we R, the set C, = {x€ X : f(x) = o} belongs to
(d) For every «€ R, the set D, = {x€ X : f(x) < o} belongs to

PROOF.  Since B, and A, are complements of each other, statement
(a) 1s equivalent to statement (b). Similarly, statements (c) and (d)
are equivalent. If (a) holds, then 4, _,, belongs to X for each n and
since

o
(ﬂ = m] A(x -1/n>»
n=

it follows that C, € X. Hence (a) implies (c). Since

Aa = "ul Ca+1lnv
it follows that (c) implies (a). Q.E.D.

2.5 EXaMPLES. (a) Any constant function is measurable. For,
if f(x) = cforall xe Xand if « > ¢, then

fxe X:f(x) > o} =0,
whereas if « < ¢, then

fxeX:f(x) > a} = X.

Measurable Functions 9

(b) If E € X, then the characteristic function y,, defined by

xe(x) =1, x€E,
=0, x¢E,
is measurable. In fact, {x € X : xz(x) > o} is either X, [, or 0.

(c) If X is the set R of real numbers, and X is the Borel algebra B,
then any continuous function fon R to R is Borel measurable (that is,
B-measurable). In fact, if f is continuous, then {x ¢ R : f(x) - «] IS
an open set in R and hence is the union of a sequence of open intervals.

Therefore, it belongs to B.

(d) If X = R and X = B, then any monotone function is Borel
measurable. For, suppose that /' is monotone increasing in the sense
that x < x” implies f(x) < f(x). Then {xe R : f(x) > «} consists of
4 half-line which is either of the form {xe€ R : x > a} or the form
{t€R:x 2a},oris Ror 0.

Certain simple algebraic combinations of measurable functions are

mcasurable, as we shall now show.

2.6 LEMMA. Let f and g be measurable real-valued functions and let
« be a real number. Then the functions

o, f* f+g f& Ifl,

are also measurable.
rroOF.  (a) If ¢ = 0, the statement is trivial. If ¢ > 0, then
{(xe X:cf(x) > a} ={xe X:f(x) > afc}eX.
I'he case ¢ < 0 is handled similarly.
(h) If « < 0, then {x€ X : (f(x))* > o} = X;if « > 0, then
X (f(x))2 > o} )
—{xeX:f(x) > VaU{xe X: f(x) < ~Va}.
(¢) By hypothesis, if r is a rational number, then
S, ={xeX:f(x)>rin{xc X:gy) -a 1
helonpgs to X, Since it is readily seen that

Ve X (f 4 g)x) = af LS, e rational},

it tollows that /g is measurable.
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CHAPTER 2

Measurable Functions

In developing the Lebesgue integral we shall be concerned with
classes of real-valued functions defined on a set X. In various applica-
tions the set X may be the unit interval I == [0, 1] consisting of all real
numbers x satisfying 0 < x < 1; it may be the set N = {1,2,3,...}
of natural numbers; it may be the entire real line R; it may be all of
the plane; or it may be some other set. Since the development of the
integral does not depend on the character of the underlying space X,
we shall make no assumptions about its specific nature.

Given the set X, we single out a family X of subsets of X which are
“well-behaved™ in a certain technical sense. To be precise, we shall
assume that this family contains the empty set ® and the entire set X,
and that X is closed under complementation and countable unions.

2.1 DEFINITION. A family X of subsets of a set X is said to be a
o-algebra (or a o-field) in case:

(i) 0, X belong to X.

(i) If 4 belongs to X, then the complement ¢(4) = X\ 4 belongs
to X.

(iii) If (A4,) is a sequence of sets in X, then the union Ur-1 A, be-
longs to X.

An ordered pair (X, X) consisting of a set X and a o-algebra X of

subsets of X is called a measurable space. Any set in X is called an
N

Measurable Functions 7

X-measurable set, but when the o-algebra X is fixed (as is generally the
case), the set will usually be said to be measurable.
The reader will recall the rules of De Morgan:

2.1 %(U A,,) =N %4, (g(m Aa) = €(4.).

It follows from these that the intersection of a sequence of sets in X
also belongs to X.

We shall now give some examples of o-algebras of subsets.

2.2 ExaMpPLES. (a) Let X be any set and let X be the family of all
subsets of X.

(b) Let X be the family consisting of precisely two subsets of X,
namely @ and X.

(c) Let X ={1,2,3,...} be the set N of natural numbers and let
X consist of the subsets

0, {1,3,5,...}, {2,4,6,...}, X.

(d) Let X be an uncountable set and X be the collection of subsets
which are either countable or have countable complements.

(¢) If X, and X, are o-algebras of subsets of X, let X, be the inter-
section of X, and X,; that is, X3 consists of all subsets of X which
helong to both X; and X,. It is readily checked that X, is a o-algebra.

(f) Let A4 be a nonempty collection of subsets of X. We observe
(hat there is a smallest o-algebra of subsets of X containing 4. To see
(his. observe that the family of all subsets of X is a o-algebra containing
1 and the intersection of all the o-algebras containing A is also a
o alpebra containing 4. This smallest o-algebra is sometimes called
the o-algebra generated by A.

(p) Let X be the set R of real numbers. The Borel algebra is the
o alpebra B generated by all open intervals (a, b) in R. Observe that
the Borel algebra Bis also the o-algebra generated by all closed intervals
[a.b]in R. Any set in Bis called a Borel set.

(h) Let X be the set R of extended real numbers. 10 £ is a Borel
sibset of R, let

() L, Eul-w), E,=Euf{to), L FOi-o, + 00},
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integrals of all simple functions ¢ such that ¢(x) < f(x) for all xin R.
T'he integral can then be extended to certain functions that take both
SIgNs.

Although the generalization of the notion of length to certain sets in
R which are not necessarily intervals has great interest, it was observed
in 1915 by Maurice Fréchet that the convergence properties of the
Lebesgue integral are valid in considerable generality. Indeed, let X
be any set in which there is a collection X of subsets containing the
empty set @ and X and closed under complementation and countable
unions. Suppose that there is a nonnegative measure function p
defined on X such that u(0) = 0 and which is countably additive in
the sense that

L

WU E) =2 wE)

i=1

for each sequence (£)) of sets in X which are mutually disjoint. In
this case an integral can be defined for a suitable class of real-valued
functions on X, and this integral possesses strong convergence
properties.

As we have stressed, we are particularly interested in these con-
vergence theorems. Therefore we wish to advance directly toward
them in this abstract setting, since it is more general and, we believe,
conceptually simpler than the special cases of integration on the line
orin R". However, it does require that the reader temporarily accept
the fact that interesting special cases are subsumed by the general
theory. Specifically, it requires that he accept the assertion that there
exists a countably additive measure function that extends the notion
of the length of an interval. The proof of this assertion is in Chapter 9
and can be read after completing Chapter 3 by those for whom the
suspense is too great.

In this introductory chapter we have attempted to provide motivation
and to set the stage for the detailed discussion which follows. Some
of our remarks here have been a bit vague and none of them has been
proved. These defects will be remedied. However, since we shall
have occasion to refer to the system of extended real numbers, we now
append a brief description of this system.

Introduction 5

In integration theory it is frequently convenient to adjoin the two
symbols —oo, +oo to the real number system R. (It is stressed that
these symbols are not real numbers.) We also introduce the convention
that —oo < x < +oo for any x € R. The collection R consisting of
the set R U {—c0, +oo} is called the extended real number system.

One reason we wish to consider R is that it is convenient to say that
the length of the real line is equal to +co. Another reason is that we
will frequently be taking the supremum (= least upper bound) of a
set of real numbers. We know that a nonempty set A of real numbers
which has an upper bound also has a supremum (in R). If we define
the supremum of a nonempty set which does not have an upper bound
(o be +oo, then every nonempty subset of R (or R) has a unique
supremum in R. Similarly, every nonempty subset of R (or R) has a
unique infimum (= greatest lower bound) in R. (Some authors
mtroduce the conventions that inf@® = +oo, sup@ = —oo, but we
<hall not employ them.)

If (x,) is a sequence of extended real numbers, we define the limit
superior and the limit inferior of this sequence by

lim sup x, = igf( ’s'gg x,.),
liminf x, = Sl:lp (:r;f;n .\‘,,).

If the limit inferior and the limit superior are equal, then their value is
called the limit of the sequence. It is clear that this agrees with the
conventional definition when the sequence and the limit belong to R.

I'nally, we introduce the following algebraic operations between
the symbols +o0o and elements x € R:

(+00) + () = x + (+0) = (£0) + x = *o00,

(iw)(iw) = 400, (id))( T(X)) = —00,
x(+00) = (+oo)x = +oo ifv >0,
0 ity 0,
oo iy < 0.
It should be noticed that we do not define (1) |+ () or (—0) +

( 1), nor do we define quotients when the denommator is +00.
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frequently needs to make such interchanges, the Lebesgue integral is
more convenient to deal with than the Riemann integral. To exemplify
't ese remarks, let the sequence (f,) of functions be defined for x > 0
by £(x) = e ™/Vx. It is readily seen that the (improper) Riemann
integrals

+ e—nx
I, = — dx
o Vx

exist and that lim f,(x) = Oforall x > 0. However, since lim f,(x)
n— o x—0

= +oo for each n, the convergence of the sequence is certainly not
uniform for x > 0. Although it is hoped that the reader can supply
the estimates required to show that lim 7, = 0, we prefer to obtain
this conclusion as an immediate consequence of the Lebesgue Dominated
Convergence Theorem which will be proved later.  Asanotherexample,
consider the function F defined for ¢ > 0 by the (improper) Riemann
integral

+ o
F(t) = f xZe ¥ dx.
0

With a liitl> effort one can show that F is continuous and that its
derivative exists and is given by

F'(t) = —f x%e ™ dx,
0

which is obtained by differentiating under the integral sign. Once
again, this inference follows easily from the Lebesgue Dominated
Convergence Theorem.

At the risk of oversimplification, we shall try to indicate the crucial
difference between the Riemann and the Lebesgue definitions of the
integral. Recall that an interval in the set R of real numbers is a set
which has one of the following four forms:

[a,b] = {xeR:a < x < b}, (a,b) ={xeR:a < x < b},
la,h) = {xcR:a < x < b}, (a,b] ={xeR:a< x < b}.

In cach of these cases we refer to a and b as the endpoints and prescribe

Introduction 3

b — a as the length of the intervzl. Recall further that if E is a set,
then the characteristic functior of £ is the function x, defined by

xe(x) =1, ifxe E,
=0, if x¢ E.

A step function is a function ¢ which is a finite linear combination of
characteristic functions of intervais; thus

"
)

P = _/?_, & XEj -

j=1

If the endpoints of the interval E; ase a;, b;, we define the integral
ol ¢ to be

n
f<p =S efb, - a).
j=1

It / 1 o bounded function defined on an interval [a, b] and if f is not
{oo discontinuous, then the Riemann integral of f'is defined to be the
It (i an appropriate sense) of the integrals of step functions which
approsimate /. In particular, the lower Riemann integral of / may be
defined to be the supremum of the integrals of all step functions ¢
wich it g(v) + /(v) for all xin [a, b], and ¢(x) = O for x not in [a, b].
Ihe 1 ebespue intepral can be obtained by a similar process, except
it the collection of step functions is replaced by a larger class of
funetions tnsomewhat more detail, the notion of length is generalized
b snliable collection X of subsets of K. Once this is done, the step
Pt e eplaced by simple functions, which are finite linear
corbdnations of chinmacteristic functions of sets belonging to X. - 1f

X
Ul VN,
i |

el abmple fanetion and b 8 denotes the ®measare ™ or

genetalbzed fength o the set £ X Dwe define the mtegral of g to be
poo )
" i 1

W/ nonnepative function defined on & which i suitably restricted,
we ahinll define the (1 ebesgue) Integral of / to be the supremum of the
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Introduction

The theory of integration has its ancient and honorable roots in the
“method of exhaustion” that was invented by Eudoxos and greatly
developed by Archimedes for the purpose of calculating the areas and
volumes of geometric figures. The later work of Newton and Leibniz
cnabled this method to grow into a systematic tool for such calculations.

As this theory developed, it has become less concerned with applica-
tions to geometry and elementary mechanics, for which it is entirely
adequate, and more concerned with purely analytic questions, for
which the classical theory of integration is not always sufficient.
I'hus a present-day mathematician is apt to be interested in the con-
verpence ol orthogonal expansions, or in applications to differential
cquations or probability.  For him the classical theory of integration
which culminated in the Riemann integral has been largely replaced
by the theory which has prown from the pioneering work of Henri
I ehesgue at the hegimming of this century. The reason for this is
very stmple: the powertul convergence theorems associated with the
I ebespue theory of integration fead to more peneral, more complete,
and more elegant results than the Ricmann mtepral adnts.

I ehespue's defimtion o the iteprnl enlarpes the collection of
finctions Tor which the integral i detined . Although this enlargement
b uselul i dselt, s marn victue s that the theorems relating to the
iterchnnge of the it and the mtepral are valid under less stringent

anstmptions than are required for the Ricmann mtepral.  Since one
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vi Preface

that one of the features of this book that is most appreciated is its
brevity.

The Elements of Lebesgue Measure is descended from class notes
written to acquaint the reader with the theory of Lebesgue measure
in the space R?. While it is easy to find good treatments of the case
p = 1, the case p > 1 is not quite as simple and is much less frequently
discussed. The main ideas of Lebesgue measure are presented in
detail in Chapters 10-15, although some relatively easy remarks are
left to the reader as exercises. The final two chapters venture into
the topic of nonmeasurable sets and round out the subject.

There are many expositions of the Lebesgue integral from various
points of view, but I believe that the abstract measure space approach
used here strikes directly towards the most important results: the
convergence theorems. Further, this approach is particularly well-
suited for students of probability and statistics, as well as students
of analysis. Since the book is intended as an introduction, I do not
follow all of the avenues that are encountered. However, I take pains
not to attain brevity by leaving out important details, or assigning
them to the reader.

Readers who complete this book are certainly not through, but
if this book helps to speed them on their way, it has accomplished its
purpose. In the References, I give some books that I believe readers
can profitably explore, as well as works cited in the body of the text.

I am indebted to a number of colleagues, past and present, for
their comments and suggestions; I particularly wish to mention N. T.
Hamilton, G. H. Orland, C. W. Mullins, A. L. Peressini, and J. J.
Uhl, Jr. I also wish to thank Professor Roy O. Davies of Leicester
University for pointing out a number of errors and possible improve-
ments.

ROBERT G. BARTLE
Ypsilanti and Urbana
November 20, 1994
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Preface

This book consists of two separate, but closely related, parts.
The first part (Chapters 1-10) is subtitled The Elements of Integra-
tion; the second part (Chapters 11-17) is subtitled The Elements of
Lebesgue measure. It is possible to read these two parts in either
order, with only a bit of repetition.

The Elements of Integration is essentially a corrected reprint of a
book with that title, originally published in 1966, designed to present
the chief results of the Lebesgue theory of integration to a reader hav-
ing only a modest mathematical background. This book developed
from my lectures at the University of Illinois, Urbana-Champaign,
and it was subsequently used there and elsewhere with considerable
success. Its only prerequisites are a understanding of elementary real
analysis and the ability to comprehend “e-6 arguments”. We suppose
that the reader has some familarity with the Riemann integral so that
it is not necessary to provide motivation and detailed discussion, but
we do not assume that the reader has a mastery of the subtleties of
that theory. A solid course in “advanced calculus”, an understanding
of the first third of my book The Elements of Real Analysis, or of
most. of my book Introduction to Real Analysis with D. R. Sherbert
provides an adequate background. In preparing this new cedition, I
have scized the opportunity to correct certain errors, but | have re-
sisted the temptation to insert additional material, since I believe
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