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Outline 
 
 
1. Taxonomy of games: cooperative and noncooperative 
 
2. Describing noncooperative games and strategic behavior: rationality, 
 dominance, iterated dominance, and Nash equilibrium 
 
3. Game experiments: guessing and coordination games 
 
4. Repeated games: supporting cooperation via credible threats  
 
5. Examples of cooperative games: marriage, college admissions, and 
 matching markets (slides excerpted from Jonathan Levin’s) 
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1. Taxonomy of games: cooperative and noncooperative 
 
A game is a multi-person decision situation, in which a person’s outcome is 
influenced by other people’s decisions as well as his own. 
 
Thus almost all economic interactions are games.  
 

 
There are two leading frameworks for analyzing games: cooperative and 
noncooperative. 
 
 
● Cooperative game theory assumes rational strategic behavior, unlimited 

communication, and unlimited ability to make agreements. 
 
● It sidesteps the details of the structure by assuming that players reach a 

Pareto-efficient agreement, which is sometimes further restricted, e.g. by 
requiring symmetry of utility outcomes for symmetrically situated players. 

 
● Its goal is to characterize the limits of the set of possible agreements that might 

emerge from rational (possibly implicit) bargaining.  
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● Noncooperative game theory also assumes strategic rationality. 
 
But by contrast: 
 
● Noncooperative game theory replaces cooperative game theory’s assumptions 

of unlimited communication and ability to make agreements with a detailed 
model of the situation and of how rational players will behave in it. 

 
● Its goal is to use rationality, augmented by the “rational expectations” notion of 

Nash equilibrium, to predict or explain outcomes in a situation. 
  
 
This course focuses on noncooperative game theory, which dominates 
applications. 
 
 
But cooperative game theory is better suited to some applications, e.g. where the 
structure of the game is unclear or unobservable, and it is desired to make 
predictions that are robust to it. 
 
I will give a whirlwind tour of an example of cooperative game theory at the end. 
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Like the term “game” itself, the term “noncooperative” is a misnomer: 
 
 
● Noncooperative game theory spans the entire range of multi-person or 

interactive decision situations. 
 
● Although zero-sum games, whose players have perfectly conflicting goals, 

played a leading role in the development of the theory, most applications 
combine elements of conflict with elements of coordination, and some involve 
predicting which settings are better for fostering cooperation. 

 
● This is done by making behavioral assumptions at the individual level  

(“methodological individualism”), thereby requiring cooperation to emerge (if 
it does) as the outcome of explicitly modeled, independent decisions by 
individuals in response to explicitly modeled institutions. 

 
 
● By contrast, cooperative game theory makes the group-level assumption that 

the outcome will be Pareto-efficient, and (with some important exceptions) 
downplays the incentive and coordination issues that are the focus of 
noncooperative analyses of cooperation.  
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In these lectures, we will first describe the structure of a noncooperative game. 
 
 
We will then introduce assumptions about strategic behavior, gradually refining 
the notion of what it means to make rational strategic decisions. 
 
 
 
In the process we will show how game theory can elucidate economic questions. 
 
 
 
 
As you learn to describe the structure, bear in mind that the goal is to provide 
enough information about the game to formalize the idea of a rational decision. 
 
(This may foster patience about not yet knowing what it means to be rational.)    
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From the noncooperative point of view, a game is a multi-person decision 
situation defined by its structure, which includes: 
 
● The players, independent decision makers (e.g. bridge has first four players, 

then three, not two, even though partners have the same goals) 
 
● The rules, which specify the order of players’ decisions, their feasible decisions 

at each decision point, and their information at each decision point. 
 

● How players’ decisions jointly determine the physical outcome 
 
● Players’ preferences over outcomes (or probability distributions of outcomes) 
 
 
Players’ preferences over outcomes are modeled just as in decision theory. 
 
 
Preferences can be extended to handle shared uncertainty about how decisions 
determine the outcome just as in decision theory: by assigning von Neumann-
Morgenstern utilities, or payoffs, to outcomes and assuming that players 
maximize their expected payoffs. 
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Something is mutual knowledge if all players know it. 
 
Something is common knowledge if all players know it, all know that all know it, 
and so on. 
 
Assume here, for simplicity, that the structure of the game is common 
knowledge, except possibly for shared uncertainty about how decisions 
determine the outcome, with the probability distributions common knowledge. 
 
(Later parts of the course will relax the assumption that the structure is common 
knowledge, developing ways to model asymmetric information.) 
 
 
 
I also assume, for simplicity, that players make single, simultaneous decisions. 
 
Simultaneous decisions need not be synchronous, but they must be strategically 
simultaneous in that players cannot observe each other’s decisions in time to 
react. 
 
(Later parts of the course will relax this too.) 
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Aside on games with sequential decisions  
 
Noncooperative game theory’s methods for analyzing rational decisions in games 
in which players make simultaneous decisions can (and will, later) be extended 
to games in which some decisions are sequential, and reactions are possible. 
 
Generalize the notion of a decision to a decision rule or strategy, a complete 
contingent plan for playing the game that allows a player’s decisions to respond 
to others’ decisions when he can observe them before making his own decisions. 
 
Players must be thought of as choosing their strategies strategically 
simultaneously (without observing others’ strategies) at the start of play. 
 
Rational, perfect foresight (strong assumption!) implies that simultaneous choice 
of such strategies yields the same outcome as decision-making in real time. 
 
Complete contingent plans are needed (even for decision points ruled out by 
prior decisions) to evaluate consequences of alternative strategies and formalize 
the idea that the predicted strategy choice is optimal. (Zero-probability events are 
endogenously determined by players’ decisions, so cannot be ignored in games.) 
 
End of aside 
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Return to games in which players make single, simultaneous decisions. 
 
 
● In these and other games, a player’s decisions must be feasible independent of 

others’ decisions; e.g. “wrestle with player 2” is not a well-defined decision, 
although “try to wrestle with player 2” could be, if what happens if 2 doesn’t 
also try is clearly specified. 

 
 
● Specifying all of each player’s decisions must completely determine an 

outcome (or at least a probability distribution over outcomes).  
 
 
 
If a game model does not pass these tests, it must be modified until it does. 
 
E.g. If you object to my game analysis on the grounds that players don’t really 
have to play “my” game, my (only!) remedy is to add to my game’s rules a 
player’s decision whether to participate, and then to insist that that decision be 
explained by the same behavioral assumptions as players’ other decisions. 
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2. Describing noncooperative games and strategic behavior: rationality, 
 dominance, iterated dominance, and Nash equilibrium 
 

 
These examples will show how to describe games with simultaneous decisions in 
“normal” or “payoff-function” form, how to describe strategic behavior, and 
introduce the issues a theory of strategic behavior should address. 
 
(Later in the course you will learn how to use the normal form and the alternative, 
extensive form, to model games with some sequential decisions, using the notion 
of strategy mentioned above.) 
 

 

Crusoe versus Crusoe is not really a game, just two independent decision 
problems; and we don’t need any theory to predict that rational players will 
choose (T, L). 

 
 
 

L R 

T 
2 

2 
1 

2 

B 
2 

1 
1 

1 

 Crusoe vs Crusoe 
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Prisoner’s Dilemma is a game, because players’ decisions affect each other’s 
payoffs; but we still don’t need a new theory to predict that rational players will 
choose (Confess, Confess). (“Confess” = “Defect”; “Don’t” = “Cooperate”.) 
 
 
 
(The “’s” in Prisoner’s Dilemma (not “s’”) signals methodological individualism.) 
 
 
 

 Don’t Confess 

Don’t 
3 

3 
5 

0 

Confess  
0 

5 
1 

1 

 Prisoner’s Dilemma 
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● A strictly dominant decision is a decision that yields a player strictly higher  
 payoff, no matter which decision(s) the other player(s) choose.  
 

 
 
E.g. T for Row or L for Column in Crusoe vs Crusoe, or Confess for either 
player in Prisoner’s Dilemma.  
 

 
 Don’t Confess 

Don’t 
3 

3 
5 

0 

Confess  
0 

5 
1 

1 

 Prisoner’s Dilemma 
 
A rational player must choose a strictly dominant decision if he has one. 
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● A strictly dominated decision is a decision that yields a player strictly lower  
payoff than another feasible decision, no matter which decisions the others 
choose. 
 
E.g. B for Row or R for Column in Crusoe vs Crusoe, or Don’t in Prisoner’s 
Dilemma.  

 Don’t Confess 

Don’t 
3 

3 
5 

0 

Confess  
0 

5 
1 

1 

 Prisoner’s Dilemma 
 
A rational player will never play a strictly dominated decision, because there are 
no beliefs about other players’ decisions that make it a best response. 
 
 
 
Although it doesn’t happen in Crusoe vs Crusoe or Prisoner’s Dilemma, there 
can be dominated decisions without a dominant decision, which makes the 
notion of dominated decision more useful than the notion of dominant decision. 
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Because of the way the prisoners’ payoffs interact, individually rational decisions 
yield a collectively suboptimal (Pareto-inefficient, in the prisoners’ view) outcome. 
 
Note that what’s Pareto-efficient for the prisoners need not be good for society. 
 

 Don’t Confess 

Don’t 
3 

3 
5 

0 

Confess  
0 

5 
1 

1 

 Prisoner’s Dilemma 
 
Prisoner’s Dilemma highlights a flaw in libertarianism: an enforceable law against 
confessing would make both prisoners better off, while limiting their freedom. 
 
(The grain of truth in libertarianism is that it would be beneficial to be the only one 
allowed to break the law. 
 
But that can’t yield a universal rule by which to organize society, “universal” as in: 
“Act only according to that maxim whereby you can, at the same time, will that it 
should become a universal law.”—Kant) 
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Prisoner’s Dilemma’s tension between individual rationality and Pareto-efficiency 
makes it the simplest possible model of incentive problems, which makes it a 
popular platform for the analyses of institutions that overcome such problems. 
 
 
The positive flip side of my caveat about modeling situations as games, e.g.:  
 
“If you object to my game analysis on the grounds that players don’t really have 
to play ‘my’ game, my (only!) remedy is to add to my game’s rules a player’s 
decision whether to participate, and then to insist that that decision be explained 
by the same behavioural assumptions as players’ other decisions.” 
 
This insistence is an important constraint on analysis: otherwise there is nothing 
to pin down the assumptions implicit in speculative “solutions” to problems.   
 
 
Later in these lectures we will see examples of how repeated interaction can 
sometimes support cooperation despite incentive problems in the short run.  
 
Yet a Prisoner's Dilemma model of incentive problems is too simple: it ignores 
the difficulty of coordination and conflicts between different ways to cooperate. 



16 

 

In Pigs in a Box, Row (R) is a big (“dominant”) pig and Column (C) a little 
(“subordinate”) pig. The box is a “Skinner box”, named for B.F. Skinner. 
 
● Pushing a lever at one end of the box yields 10 units of grain at the other. 

Pushing “costs” either pig 2 units of grain. 
 
● If R pushes while C waits, C can eat 5 units before R comes and shoves C 

aside. 
 
● If C pushes while R waits, C cannot shove R aside and R gets all but one unit 

of grain. 
 
● If both push and then arrive at the grain together, C gets 3 units and R gets 7. 
 
● If both wait, both get 0. 

 Push Wait 

Push 
1 

5 
5 

3 

Wait 
-1 

9 
0 

0 

 Pigs in a Box 
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Here rational strategic behavior is more subtle, in that for the first time, it requires 
at least one player to predict the other’s response to the game. 
 
 
 
Its consequences are also a bit surprising: 
 
● R can do anything C can do, which in an individual decision problem would 
ensure that R does better. 
 
● But in the lab pigs tend to settle down at (R Push, C Wait): C does better! 
 
● In games, evidently, (the right kind of) weakness might be an advantage. 
 
 
 
To see why, and to see which kinds of weakness might be advantageous, we 
need more theory. 
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Recall that the structure is assumed for simplicity, to be common knowledge. 
 
 
 
 
● A player is rational (in the decision-theoretic sense) if he maximizes his payoff 

given beliefs (subjective probability distributions) about other players’ 
decisions that are not inconsistent with anything he knows. 

 
 
 
 
● A player who faces uncertainty about the consequences of his decisions is 
  rational if he maximizes his expected payoff (vN-M utility). 
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A first guess at how to formalize the idea of rational decisions in games is that 
assuming that players are rational will suffice for a useful theory of behavior. 
 
That guess is correct for games like Crusoe v. Crusoe and Prisoner’s Dilemma. 

But that guess fails badly in slightly more complex games, such as Pigs in a Box. 
 
 
A second guess is that assuming that players are rational and that that fact is 
common or at least mutual knowledge is enough to yield a useful theory.  
 
That guess works in some games, in which common knowledge of rationality 
yields a unique prediction.  

But even that guess fails badly in many economically interesting games. 
 
 
A third guess is that assuming that players are rational and that players’ 
decisions are best responses to correct beliefs about others’ decisions (which 
must then be the same for all players) is enough to yield a useful theory. 
 
That guess leads to the idea of Nash equilibrium, which is the leading behavioral 
assumption in noncooperative game theory; but even it has some drawbacks.  
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To see how common or mutual knowledge of rationality works, imagine that the 
pigs are as good at reasoning about others’ responses to incentives as (some) 
humans seem to be.  
 
They can then use rationality and knowledge of others’ rationality—in this case 
mutual knowledge is enough—to figure out they should play (R Push, C Wait). 
 
If they have mutual knowledge of rationality, the reasoning goes as follows: 
 

 Push Wait 

Push 
1 

5 
5 

3 

Wait 
-1 

9 
0 

0 

 Pigs in a Box 
 

● No rational C will choose Push. 
 
● Therefore no rational R who knows that C is rational will play Wait. 
 
● (R Push, C Wait) is the only possible outcome. 
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In economic terms, because Wait strictly dominates Push for C, only R has an 
incentive to Push. 
 
 
This incentive effect is what turns R’s greater strength into a weakness.  
 
 
R might do better if he can change the game in a way that gives C an incentive to 
Push, at least some of the time; e.g. by committing himself to giving C more grain 
if C Pushed. (There’s still a coordination problem; more below.) 
 
 

 

Understanding which kinds of games commitments help in, and what kinds of 
commitments help, should help us to understand the usefulness of contracts and 
other ways to change how relationships are governed. 
 
(As legal “persons”, corporations have the “right” to be sued. This is a “right”, not 
simply a liability, because it may allow mutually beneficial contracts that would 
not be in the other party’s interests if it could not sue for breach.) 
  



22 

 

Aside on learning  

Pigs are probably not really as good as humans at reasoning about others’ likely 
decisions. So why do they still tend to settle down at (R Push, C Wait)? 

 Push Wait 

Push 
1 

5 
5 

3 

Wait 
-1 

9 
0 

0 

 Pigs in a Box 
  

● In repeated play, because Push is strictly dominated for player C, it must do 
worse on average for C than Wait.  

 
● Thus even a C that reacts unthinkingly to rewards will “learn” to choose Wait 

with higher and higher probability over time. 
 
● Once the probability that C chooses Wait is high enough (> 4/7), player R will 

learn to choose Push with higher and higher probability over time. 
 
● They will eventually settle down at (R Push, C Wait): Learning yields the same 

outcome in the limit as rationality-based reasoning does: a general result. 
End of aside  
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We can characterize the implications of common knowledge of rationality via 
 
● Iterated deletion of strictly dominated decisions (often called “iterated strict 

dominance”): eliminating strictly dominated decisions for one or both players, 
then eliminating decisions that become strictly dominated once players’ 
strictly dominated decisions are eliminated, and so on ad infinitum.  

 
If iterated strict dominance reduces the game to a single decision for each 
player—as in Pigs in a Box eliminating Push for C and then Wait for R reduces 
the game to (Push, Wait)—the game is said to be dominance-solvable. 
 

  Push Wait 

Push 
1 

5 
5 

3 

Wait 
-1 

9 
0 

0 

 Pigs in a Box 
 

The outcome of iterated strict dominance is independent of the order in which it is 
done, so in a dominance-solvable game it always leads to the same decisions. 
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Aside on weak dominance 
 
● A weakly dominant decision is a decision that yields a player weakly higher 

payoff (or expected payoff), no matter which decisions the other players 
choose.  

   
● A weakly dominated decision is a decision that yields a player weakly lower 

payoff (or expected payoff), no matter which decisions the other players 
choose.  

 
The outcome of iterated weak dominance is not independent of the order in 
which it is done. E.g. in Give Me a Break, it leads to (T, L), (T, R), or (B, R). 

  L R 

T 
1 

1 
1 

0 

B 
0 

0 
0 

0 

 Give Me a Break 
 
Moreover, a rational player with sharply focused beliefs need not choose a 
weakly dominant decision, and might choose a weakly dominated decision.  
End of aside 
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Iterated strict dominance is linked to common knowledge of rationality via the 
notion of rationalizable decisions.  

 
● A rationalizable decision is one that survives iterated elimination of never 

(weak) best responses, those decisions that are not even tied for being a 
best response to any beliefs. 

 
The set of rationalizable decisions can’t be larger than the set that survive 
iterated strict dominance, because strictly dominated decisions can never be 
weak best responses (that is why the notion builds on strict dominance). 
 
In a two-person game, a rationalizable decision is exactly one that survives 
iterated strict dominance; well defined because the latter is order-independent. 

In games with more than two players, the two notions are not quite the same 
because players can have correlated beliefs about others’ strategies.   

 
It will be shown later in the course that if the structure and players’ rationality are 
common knowledge, then players must choose rationalizable decisions, and that 
any profile of rationalizable decisions can be supported by beliefs that are 
consistent with common knowledge of the structure and of players’ rationality.  
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E.g., M and C are the only rationalizable decisions in (how support them?): 
 

 L C R 

T 
0  

7 
5 

0 
3 

0 

M 
0 

5 
2 

2 
0 

5 

B 
7 

0 
5 

0 
3 

7 

 Dominance-solvable game 
 
But any decisions are rationalizable in (how support them?): 
 

 L C R 

T 
0  

7 
5 

0 
7 

0 

M 
0 

5 
2 

2 
0 

5 

B 
7 

0 
5 

0 
0 

7 

 Unique equilibrium but no dominance 
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Nash Equilibrium 
 
Most economically interesting games have multiple rationalizable outcomes, so 
players’ decisions are not dictated by common knowledge of rationality, and the 
guess that it will yield a useful theory of strategic behavior fails badly. 
 
 
● To make sharper predictions, noncooperative game theory assumes that  

players’ decisions are in Nash equilibrium, that is, that each player’s decision 
maximizes his payoff or expected payoff, given the others’ decisions. 

 
 
Any equilibrium decision is rationalizable (why?).  
 
 
It can be shown that an equilibrium always exists in non-pathological games.  
 
 
Therefore in a dominance-solvable game, players’ unique rationalizable 
decisions are in equilibrium (why?). 
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In non-dominance-solvable games, however, equilibrium also effectively requires 
that players’ decisions are best responses to correct beliefs about others’ 
decisions, which must then be the same for all players, e.g.: 
 

 L C R 

T 
0  

7 
5 

0 
7 

0 

M 
0 

5 
2 

2 
0 

5 

B 
7 

0 
5 

0 
0 

7 

 Unique equilibrium but no dominance 
 
 
Nash equilibrium is a kind of “rational expectations” equilibrium, in that if players 
are rational, and all expect the same decisions and best respond to those beliefs, 
then their beliefs are self-confirming if and only if they are in Nash equilibrium. 
 
 
This goes far beyond rationality, or even common knowledge of rationality. 
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Why might players have correct beliefs about each other’s decisions? 
 
 
There are two possible justifications, which generalize those mentioned in 
connection with Pig in a Box. 
 

 
● Thinking: If players are rational and have perfect models of each other’s 

decisions, strategic thinking will lead them to have the same beliefs immediately, 
and so play an equilibrium even in their initial responses to a game. 

 
 
● Learning: Even without perfect models, if players are rational and repeatedly play 

analogous games, experience will eventually allow them to predict each others’ 
decisions well enough to play an equilibrium in the game that is repeated. 
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Aside on mixed strategies 
In game theory it is useful to extend the idea of decision, or strategy, from the 
unrandomized (pure) notion to allow randomized (mixed) decisions or strategies. 
 
E.g. Matching Pennies has no appealing pure strategies, but there is an 
appealing way to play using mixed strategies: randomizing 50-50. (Why?)  
 

 Heads Tails 

Heads 
-1  

1 
1 

-1 

Tails 
1 

-1 
-1 

1 

 Matching Pennies 
 

Our definitions apply to mixed as well as pure strategies, if the uncertainty mixed 
strategies cause is handled as for other kinds of uncertainty, by assigning payoffs 
to outcomes so that rational players maximize their expected payoffs. 
 
Mixed strategies ensure that “well-behaved” games always have rational-
expectations strategy combinations: i.e. that Nash equilibria always exist.  
End of aside  
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Nonuniqueness of Equilibrium and Coordination 
  

Go 
 
Wait 

   
Fights 

 
Ballet 

Go 
0 

0 
1 

1 
 

Fights 
1 

2 
0 

0 

Wait 
1 

1 
0 

0 
 

Ballet 
0 

0 
2 

1 

 Alphonse and Gaston   Battle of the Sexes 
 
In the early 1900s Frederick B. Opper created the comic strip Alphonse and 
Gaston, with two excessively polite fellows saying "after you, my dear Gaston" or 
"after you, my dear Alphonse" and thus never getting through a doorway. 
Alphonse and Gaston live on in the dual-control lighting circuits in our homes. 
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Alphonse and Gaston's problem is that there are two good ways to solve their 
coordination problem…and therefore maybe no good way. 
 
Each way requires them to decide differently, but the setting provides no clue to 
break the symmetry of their roles. 
 
 
 
 
Battle of the Sexes—the simplest possible bargaining problem—adds to the 
difficulty of coordination by giving players different preferences about how to 
coordinate, but still no clue about how to break the symmetry. 
 
 
 
These games are popular platforms for the analyses of institutions that overcome 
such problems, e.g. via conventions that use labels to break the symmetry of 
players’ roles, such as “defer to short people” or “defer to women”.  
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In Stag Hunt (Rousseau's story), with two or n players, there are two symmetric, 
Pareto-ranked, pure-strategy equilibria, “all-Stag” and “all-Rabbit”. 
 

             Other Player   All Other Players 
 Stag Rabbit   Stag Rabbit 

Stag 
2 

2 
1 

0 
 

Stag 2 0 

Rabbit 
0 

1 
1 

1 
 

Rabbit 1 1 

 2-person Stag Hunt   n-Person Stag Hunt 

 
All-Stag is better for all than all-Rabbit: Kant would have no trouble here. 
 
But Stag is riskier in that unless all others play Stag, a player does better with 
Rabbit. 
 
Stag Hunt is like a choice between autarky and participating in a highly 
productive but brittle society, which is more rewarding but riskier because 
productivity depends on perfect coordination.  
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Stag Hunt is a special case of Larry Summers’s Bank Runs example: 
  
“A crude but simple game, related to Douglas Diamond and Philip Dybvig’s [1983 
JPE] celebrated analysis of bank runs, illustrates some of the issues involved 
here. Imagine that everyone who has invested $10 with me can expect to earn 
$1, assuming that I stay solvent. Suppose that if I go bankrupt, investors who 
remain lose their whole $10 investment, but that an investor who withdraws today 
neither gains nor loses. What would you do? Each individual judgment would 
presumably depend on one's assessment of my prospects, but this in turn 
depends on the collective judgment of all of the investors. 
 

Suppose, first, that my foreign reserves, ability to mobilize resources, and 
economic strength are so limited that if any investor withdraws I will go bankrupt. 
It would be a Nash equilibrium (indeed, a Pareto-dominant one) for everyone to 
remain, but (I expect) not an attainable one. Someone would reason that 
someone else would decide to be cautious and withdraw, or at least that 
someone would reason that someone would reason that someone would 
withdraw, and so forth. This…would likely lead to large-scale withdrawals, and I 
would go bankrupt. It would not be a close-run thing. …Keynes’s beauty contest 
captures a similar idea. 
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Now suppose that my fundamental situation were such that everyone would be 
paid off as long as no more than one-third of the investors chose to withdraw. 
What would you do then? Again, there are multiple equilibria: everyone should 
stay if everyone else does, and everyone should pull out if everyone else does, 
but the more favorable equilibria seems much more robust.” 

—Lawrence Summers, “International Financial Crises: Causes, Prevention, and 
Cures,” (2000 AER). 

 

The game Summers describes can be represented by a payoff table as follows: 

 

  Summary statistic 
  In Out 

Representative 
player 

In 1 -10 

Out 0 0 

  Bank Runs 

 

The summary statistic is a measure of whether or not the required number of 
investors stays In. 
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  Summary statistic 
  In Out 

Representative 
player 

In 1 -10 

Out 0 0 

  Bank Runs 

In Summers’s first example, all investors must stay In to prevent the bank from 
collapsing, so the summary statistic takes the value In if and only if all but the 
representative player stay In.  

 

In Summers’s second example, two-thirds of the investors need to stay In, so the 
summary statistic takes the value In if and only if that is the case, adding in the 
representative player. 

 

In each example there are two pure-strategy equilibria: “all-In” and “all-Out”. 
 
(There is also a behaviorally implausible mixed-strategy equilibrium.)    
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In this simplified static model, what happens depends on players' initial 
responses to the game as shaped by their strategic thinking: specifically, which 
equilibrium's basin of attraction, “all-In” or “all-Out”, the initial responses fall into.   
 
 
 
The leading models of initial responses for games like this are Harsanyi and 
Selten’s (1988) notions of payoff-dominance and risk-dominance. 
 
 
 
Payoff-dominance favors equilibria that are Pareto-superior to other equilibria. 
 
Hence here it selects the all-In equilibrium, for any value of the population size n 
and deviation cost (here, the -10). 
 
 
 
But that seems behaviorally unlikely, even for small n and “small -10”.  
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Risk-dominance favors the equilibrium with (roughly) the largest “basin of 
attraction” in beliefs space.  
 

  Summary statistic 
  In Out 

Representative 
player 

In 1 -10 

Out 0 0 

  Bank Runs 
 
In games like this one, that turns out to be the same as selecting the equilibrium 
that results if each player best responds to a uniform prior over others’ decisions. 
 
 
Assuming independence of others’ decisions, with these payoffs risk-dominance 
favors the all-Out equilibrium for any n, even if only two-thirds need to stay In. 
 
 
 
That again seems behaviorally unlikely for small n.  
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3. Game experiments: guessing and coordination games 
 

 

“...professional investment may be likened to those newspaper competitions in 
which the competitors have to pick out the six prettiest faces from a hundred 
photographs, the prize being awarded to the competitor whose choice most 
nearly corresponds to the average preferences of the competitors as a whole; so 
that each competitor has to pick, not those faces which he himself finds prettiest, 
but those which he thinks likeliest to catch the fancy of the other competitors, all 
of whom are looking at the problem from the same point of view. It is not a case 
of choosing those which, to the best of one’s judgment, are really the prettiest, 
nor even those which average opinion genuinely thinks the prettiest. We have 
reached the third degree where we devote our intelligences to anticipating what 
average opinion expects the average opinion to be. And there are some, I 
believe, who practice the fourth, fifth and higher degrees.” 

 

—John Maynard Keynes, The General Theory of Employment, Interest, and 
Money, 1936 
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n-Person guessing games 
 
Imagine that you and every other member of the class are making simultaneous 
guesses, between limits 0 and 100. 
 
 
The member whose guess is closest to the target of 1/2 the class average guess 
wins a £20 prize (imagine!), with ties broken randomly. 
 
 
What is your guess? 
 
 
 
 
Now imagine instead that the member whose guess is closest to the target of 2/3 
the class average guess wins a £20 prize, with ties broken randomly. 
 
 
What is your guess? 
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Let’s start by identifying your rationalizable and Nash equilbrium guesses. 

(I ignore your own small influences on the class average for simplicity.)  
 
The answers are the same, because the game is strictly dominance-solvable. 
 
For example, if the target p = 1/2: 
 
● It’s strictly dominated to guess more than 50 (because 1/2 × 100 ≤ 50). 
 
● Unless you think that other people will make strictly dominated guesses, it’s 
 also strictly dominated to guess more than 25 (because 1/2 × 50 ≤ 25). 
 
● And so on, down to 12.5, 6.25, 3.125, and eventually to 0. 
 
Thus “all–0” is the unique Nash equilibrium.  
 
The argument for this equilibrium depends “only” on common knowledge of 
rationality, not on the assumption that players have the same correct beliefs. 
 
Thus the game provides a direct test of this kind of rationality-based reasoning. 
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In Nagel’s (1995 AER) n-person guessing game design: 

 
● 15-18 subjects simultaneously guessed between [0,100]. 
 
● The subject whose guess was closest to a target p (= 1/2 or 2/3), times the 
 group average guess won a prize, roughly £20. 
 
● The structure was publicly announced. 
 
Nagel’s subjects played these games repeatedly, but we can view their initial 
guesses as responses to games played as if in isolation if they treated their 
influences on the future as negligible, which is plausible in groups of 15 to 18. 
 
In those initial responses, subjects never played their equilibrium strategies. 
 
Instead there were spikes, which compared across treatments, appear to reflect 
a distribution of discrete “level-k” rules of thumb, whereby subjects start with a 
naïve prior that the average guess will be random on [0,100], and then iterate 
best responses one to three times (Crawford, Costa-Gomes, and Iriberri, 
“Structural Models of Nonequilibrium Strategic Thinking: Theory, Evidence, and 
Applications,” Journal of Economic Literature 51 (March 2013), 5-62; 

http://weber.ucsd.edu/~vcrawfor/CCGIJEL13.pdf) 

http://weber.ucsd.edu/~vcrawfor/CCGIJEL13.pdf


43 

 

 

 

 
Part of Nagel’s (1995 AER) Figure 1: top of figure p = 1/2, bottom p = 2/3. 
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Costa-Gomes and Crawford (2006 AER) studied two-person guessing games, 
with subjects randomly and anonymously paired to play a series of 16. 

 

 

 

Subjects played the series only once, and the design suppresses learning and 
repeated-game effects in order to elicit their initial responses to each game 
played as if in isolation, game by game. 

 

 

 

The profile of a subject’s guesses in the 16 games forms a “fingerprint” that helps 
to identify his strategic thinking more precisely than is possible by observing his 
responses to a series of games with small strategy spaces (as in Stahl and 
Wilson 1995 GEB) or a single game with large strategy space (Nagel 1995 AER). 
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In Costa-Gomes and Crawford’s guessing games, each player has his own lower 
and upper limit, both strictly positive. 

 

Each player also has his own target. 

 

 

Players make simultaneous guesses, and each player’s payoff increases with the 
closeness of his guess to his target times the other’s guess. 

 

 

The targets and limits vary independently across players and games, with targets 
both less than one, both greater than one, or “mixed”. 

 

(In Nagel’s experiments, the targets and limits were always the same for both 
players, and they varied at most across treatments with different subject groups.) 
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For example, consider this game, and imagine that each player earns 1000p 
minus the distance between her/his guess and the product of her/his target times 
the other’s guess. 

 

 

  Lower 
Limit 

Target Upper 
Limit 

 Player 1 200 0.7 600 

 Player 2 400 1.5 700 

 

 

If you are Player 1, playing with one randomly selected member of the class as 
Player 2, what is your guess?   

 

 

If you are Player 2, playing with one randomly selected member of the class as 
Player 1, what is your guess?   
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Costa-Gomes and Crawford’s games are all finitely dominance-solvable (Nagel’s 
were infinitely dominance-solvable), with unique Nash equilibria determined by 
players’ lower (upper) limits when the product of targets is less (greater) than 
one. 

 

Consider a different game, in which players’ targets are 0.7 and 1.5, the first 
player’s limits are [300, 500], and the second player’s are [100, 900]. 

 

No guess is dominated for the first player, but any guess outside [450, 750] is 
dominated for the second player. 

 

Given this, any guess outside [315, 500] becomes dominated for the first player. 

 

Given this, any guess outside [472.5, 750] becomes dominated for the second 
player. 

 

And so on until we reach (500, 750) after 22 rounds. 
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(500, 750) is the (unique) Nash equilibrium, as is easily checked directly. 

 

It can be shown that because the product of players’ targets is 1.05 > 1, the Nash 
equilibrium (500, 750) is determined by players’ upper limits. 

But not directly: In equilibrium the first player guesses his upper limit of 500, but 
the second guesses 750 (= 500 × his target 1.5), below his upper limit of 900. 

 

When the product of targets is < 1, the equilibrium is determined by players’ 
lower limits in a similar way.  

 

In Costa-Gomes and Crawford’s experiment, only 1/8
th
 of the subjects played 

close to their equilibrium guesses. 

 

Most subjects instead closely followed level-k rules of thumb, with levels 
concentrated on 1, 2, or in a few cases 3.   

 
Miguel Costa-Gomes and Vincent Crawford, “Cognition and Behavior in Two-
Person Guessing Games: An Experimental Study,” American Economic Review 
96 (2006), 1737-1768; http://dss.ucsd.edu/~vcrawfor/CGCAER06.pdf.  
 

http://dss.ucsd.edu/~vcrawfor/CGCAER06.pdf
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The “continental divide” game 
 
 
In Van Huyck, Cook, and Battalio’s (1997 JEBO) experiment, 7 subjects chose 
simultaneously among efforts from 1 to 14, with each subject’s payoff determined 
by his own effort and a summary statistic, the median, of all players’ efforts. 
 
After subjects chose their efforts, the group median was publicly announced, 
subjects chose new efforts, and the process continued. 
 
The relation between a subject’s effort, the median effort, and his payoff was 
publicly announced via a table as on the next slide.  
 
 
The payoffs of a player’s best responses to each possible median are highlighted 
in bold in the table as displayed here (but not as displayed to subjects). 
 
The payoffs of the (symmetric, pure-strategy) Nash equilibria, “all–3” and “all–12”, 
are highlighted in large bold. 
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Continental divide game payoffs 

Median Choice 

Your 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Choice 

1 45 49 52 55 56 55 46 -59 -88 -105 -117 -127 -135 -142 

2 48 53 58 62 65 66 61 -27 -52 -67 -77 -86 -92 -98 

3 48 54 60 66 70 74 72 1 -20 -32 -41 -48 -53 -58 

4 43 51 58 65 71 77 80 26 8 -2 -9 -14 -19 -22 

5 35 44 52 60 69 77 83 46 32 25 19 15 12 10 

6 23 33 42 52 62 72 82 62 53 47 43 41 39 38 

7 7 18 28 40 51 64 78 75 69 66 64 63 62 62 

8 -13 -1 11 23 37 51 69 83 81 80 80 80 81 82 

9 -37 -24 -11 3 18 35 57 88 89 91 92 94 96 98 

10 -65 -51 -37 -21 -4 15 40 89 94 98 101 104 107 110 

11 -97 -82 -66 -49 -31 -9 20 85 94 100 105 110 114 119 

12 -133 -117 -100 -82 -61 -37 -5 78 91 99 106 112 118 123 

13 -173 -156 -137 -118 -96 -69 -33 67 83 94 103 110 117 123 

14 -217 -198 -179 -158 -134 -105 -65 52 72 85 95 104 112 120 
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There were ten sessions, each with its own separate subject group. 
 
Half the groups happened to have an initial median of eight or above, and half 
happened to have an initial median of seven or below. 
 
(The experimenters probably chose the design to try to make this happen, but this 
kind of variation across sessions is not uncommon.) 
 
 
The results are graphed on the next slide: 
 
 
● The median-eight-or-above groups converged almost perfectly to the all–12 
 equilibrium. 
 
 
● By contrast, the median-seven-or-below groups converged almost perfectly to 
 the all–3 equilibrium.   
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Van Huyck, Cook, and Battalio’s Figure 3 
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The results strongly suggest that, as soon as people can observe other people’s 
decisions in analogous games, strategic thinking is eclipsed by adaptive learning. 
 
 
In adaptive learning, players adjust their decisions in the stage game in a 
direction that would increase payoffs, other things equal, given the current state. 
 
 
But, even though players converge to a Nash equilibrium in the stage game, the 
outcome is highly history-dependent, determined by which equilibrium’s basin of 
attraction subjects’ initial responses to the stage game falls into (in the case, their 
median initial response is all that matters).  
 
 
Thus even if we care only about the limiting outcome, we need to understand 
both strategic thinking and learning to predict it.  
  
John Van Huyck, Joseph Cook, and Raymond Battalio (1997): “Adaptive 

Behavior and Coordination Failure,” Journal of Economic Behavior and 
Organization 32, 483-503 
(http://www.sciencedirect.com/science/journal/01672681) 

http://www.sciencedirect.com/science/journal/01672681
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4. Repeated games: supporting cooperation via credible threats 

 

A repeated game is a dynamic game in which same stage game is played over 
and over again each period by the same players. 

 

The repeated Prisoner's Dilemma is the canonical (but overworked) model of 
using repeated interaction to overcome short-run incentive problems. 

 

It provides an opportunity to see if repeated play has a chance to overcome 
short-run incentives to cheat via credible threats to end a relationship. 

 
In economics this is called an “implicit contract”: there is no true altruism, just 
“reciprocal altruism” supported via purely self-interested behavior. 
 

 Don’t Confess 

Don’t 
3 

3 
5 

0 

Confess  
0 

5 
1 

1 

 Prisoner’s Dilemma 
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From now on, Confess = Defect, Don’t = Cooperate. 
 
First consider the game repeated a commonly known, finite number of times, T. 
 
However large T is, the strategies (complete contingent plans) (Defect no matter 
what, Defect no matter what) still form the only Nash equilibrium. 
 
● When T comes, Defect is a strictly dominant decision for both players. 
 
● Even if players contemplate repeated-game strategies that make their  

decisions functions of past history, if players are rational, nothing can avoid 
(Defect, Defect) in period T. 

 
● Given that, and that players take the future consequences of current decisions 

rationally into account, when T-1 comes, Defect is a strictly dominant 
decision for each player.  

 
● And so on, all the way back to the first period.    
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Now consider the game repeated an infinite number of times. 
 

 

(View the infinite horizon as only potentially infinite, with conditional probabilities 
of continuation bounded above zero, and perhaps discounting too.) 

 

 

 

Assume that players’ preferences aggregate their payoffs over plays. 

 

But for this to yield a well-defined preference ordering, they must discount future 
payoffs; say with a constant discount factor δ < 1, say equal for both. 

 

Thus, for example, a payoff of 1 in every period is valued at 1 + δ1 + δ
2
1 +…, 

which is finite when δ < 1. (It equals 1/(1- δ.) 
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We also need to formalize the idea of “credible threats”, for as you will see later 
in the course, there can be Nash equilibria in sequential games in which one 
player believes the other will do something crazy in some contingencies, but the 
cost of such craziness to the first player makes him avoid the contingency, so 
that the second player’s planned craziness doesn’t cost him anything. 
 
E.g. if I believe you will blow us both up if I don’t give you £20, even though it 
would hurt you as well as me, and so be (intuitively) irrational for you, it will be 
(decision-theoretically) rational for me to give you the £20, hence rational for you 
to blow us both up if I don’t, because you never have to do it; thus such a 
contingent plan is consistent with Nash equilibrium. 
 
The standard remedy is a refinement of Nash equilibrium, subgame-perfection.  
 

● A subgame is (roughly) a subset of a game that starts with a single decision 
point, contains all and only that point’s successors in the decision tree, and which 
all players have enough information to identify. 

● A subgame-perfect equilibrium is a strategy profile that induces an equilibrium 
(hence a subgame-perfect equilibrium) in every subgame. 

Subgame-perfection eliminates incredible beliefs like the one in my example. A 
truly rational person would reason that in the subgame that follows his refusal to 
give the £20, the other person wouldn’t really wish to blow them both up. 
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With an infinite horizon and a sufficiently high discount factor δ, “grim” trigger 
strategies (complete contingent plans: “Cooperate until the other player Defects, 
then Defect forever”) can support the outcome (Cooperate, Cooperate) every 
period as a Nash equilibrium. 
 
 
 
 
But this equilibrium is not subgame-perfect, because if the other player returns to 
conditional Cooperation if you Cooperate following his Defection, because his 
return is conditional it would be better for you to return to Cooperation as well. 
 
 
 
 
Even grimmer trigger strategies (“Cooperate until either of us Defects, then 
Defect forever”) do support cooperation as a subgame-perfect equilibrium.  
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 Don’t Confess 

Don’t 
3 

3 
5 

0 

Confess  
0 

5 
1 

1 

 Prisoner’s Dilemma 
 
With these payoffs, players can support (Cooperate, Cooperate) in every period 
in subgame-perfect equilibrium via the grimmer trigger strategies “Cooperate until 
either of us Defects, then Defect forever” if 3(1 + δ + δ

2 
+…) = 3/(1 - δ) ≥ 5 + 1(δ 

+ δ
2
 +…) = 5 + δ/(1 - δ), which is true if and only if δ ≥ ½. 

 
 
By contrast, when δ ≤ ½ the future is not important enough for threats of future 
defection to support cooperation, and only repeated (Defect, Defect) is consistent 
with subgame-perfect equilibrium (or Nash equilibrium).  
 
 
The limit of ½ is dependent on the magnitudes of the payoffs in the example, but 
fact that higher values of δ never hurt is general. 
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Infinite-horizon repeated games usually have a huge multiplicity of subgame-
perfect equilibria, both of outcomes and the threats used to support them, most 
asymmetric, e.g. “Row alternates between Cooperate and Defect and Column 
always Cooperates until either deviates, in which case both Defect from now on”.  

 Don’t Confess 

Don’t 
3 

3 
5 

0 

Confess  
0 

5 
1 

1 

 Prisoner’s Dilemma 
 
In this subgame-perfect equilibrium Column does worse than in the symmetric 
one above, but Defection yields both the same payoff, so supporting Column’s 
strategy as part of the equilibrium is harder than supporting Row’s. 
 
In the hypothesized equilibrium, Column gets 3 + 0δ + 3δ

2 
+… = 3/(1 – δ

2
) ≥ 5 + 

1(δ + δ
2
 +…) = 5 + δ/(1 - δ) if and only if δ ≥ 0.59, so it is a subgame-perfect 

equilibrium if δ ≥ 0.59. The limit is higher than for the symmetric equilibrium.  
 
It would be useful to know, more generally, what kinds of implicit contracts can 
be supported as subgame-perfect equilibria in repeated games. The Folk 
Theorem will answer this question later in the course. 
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5. Examples of cooperative games: marriage, college admissions, and 
 matching markets (slides excerpted from Jonathan Levin’s) 
 
 


